Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 109 - 109
1 Apr 2019
Lundberg HJ Mell SP Fullam S Wimmer MA
Full Access

Background

Aseptic loosening is the leading cause of total knee arthroplasty (TKA) failure in the long term, of which osteolysis from polyethylene wear debris remains a problem that can limit the lifetime of TKA past the second decade. To help speed up design innovations, our goal was to develop a computational framework that could efficiently predict the effect of many sources of variability on TKA wear—including design, surgical, and patient variability.

Methods

We developed a computational framework for predicting TKA contact mechanics and wear. The framework accepts multiple forms of input data: patient-specific, population-specific, or standardized motions and forces. CAD models are used to create the FEA mesh. An analytical wear model, calibrated from materials testing (wheel-on-flat) experiments, is fully integrated into the FEA process. Isight execution engine runs a design of experiments (DOE) analysis with an outcome variable, such as volumetric wear, to guide statistical model output. We report two DOE applications to test the utility of the computational framework for performing large variable studies in an efficient manner: one to test the sensitivity of TKA wear to the femoral center of rotation, and the second to test the sensitivity of TKA wear to gait input perturbations.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 6 - 6
1 Mar 2017
Mell S Fullam S Wimmer M Lundberg H
Full Access

Generic walking profiles applied to mechanical knee simulators are the gold standard in wear testing of total knee replacements (TKRs). Recently, there was a change in the international standard (ISO) for knee wear testing (ISO 14243-3): the direction of motion in the anterior/posterior (AP) and internal/external (IE) directions were reversed. The effects of this change have not been investigated, therefore it is not known whether results generated by following this new standard can be compared to historical wear tests which used the old standard. Using a finite element analysis (FEA) model of a TKR in parallel with an energy based wear model and adaptive remeshing, we investigated differences in wear between the newest ISO standard developed in 2014, and the previous ISO standard developed in 2004.

CAD models of a left sided NexGen Cruciate Retaining (CR) TKR (Zimmer, Warsaw, IN) were used to create the FEA model (Figure 1). The loads and motions specified by simulator standards ISO 14243-3(2004) and ISO 14243-3(2014) were applied to the model. Analyses were run using ABAQUS v6.13-2 Standard (Dassault Systèmes, Waltham, MA). 8 node hexahedral elements were used to model the UHMWPE component. The contact was modeled as penalty contact, with the friction coefficient set to 0.04 on the articular surface. The cobalt chromium molybdenum femoral component was modeled as a rigid surface, utilizing a mix of 2nd order quadrilaterals and tetrahedrons. Wear of the polyethylene (PE) component was predicted to 1,000,000 cycles using a previously published frictional energy-based wear model. The wear model, developed from data generated in wheel-on-flat tests, utilizes two parameters defining the frictional energy required to remove a unit volume of material both parallel (3.86E8 J/mm3) and perpendicular (3.55E7 J/mm3) to the primary polyethylene fibril direction. Primary fibril direction for the analysis was set to the AP direction. Wear for each simulation of a gait cycle was scaled to 500,000 cycles. Two gait cycles were simulated representing 1,000,000 cycles in total. Adaptive remeshing was driven by the wear model, with the mesh being updated every time increment to simulate material ablation. The time step size was variable with a maximum of 0.01s.

The FEA predicted higher wear rates for the newest ISO standard (7.34mg/million cycles) compared to the previous standard (6.04mg/million cycles) (Figure 2). Comparing the predicted wear scars (Figure 3), the new version of the standard covered a larger percentage of the total articular surface, with wear being more spread out as opposed to localized. This is more similar to what is seen in patient retrievals.

The results of the study suggest that major differences between the old and the new ISO standard exist and therefore historical wear results are not comparable to newly obtained results. In addition, this study demonstrates the utility of FEA in wear analysis, though the wear model needs further work and validation before it can be used as a supplement to simulator testing. Validation of the wear model against simulator tests and pin-on-disk experiments is currently underway.

For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 57 - 57
1 May 2016
Rad E Knowlton C Fullam S Lundberg H Laurent M Pourzal R Wimmer M
Full Access

Introduction

Failure of total knee replacements due to the generation of polyethylene wear debris remains a crucial issue in orthopedics. Unlike the hip, it is difficult to accurately determine knee implant wear rates from retrieved components. Several studies have relied on thickness measurements to estimate penetration, but the complicated geometry of contemporary tibial liners poses a challenge to accurately assess wear. In this study we address the question whether linear penetration can serve as a surrogate measure for volumetric material loss.

Methods

Eighty-one retrieved UHMWPE NexGen cruciate-retaining tibial liners (Zimmer, Warsaw, IN) with an average time in situ of 5.27±2.89 years were included in the study. Metrology data for the surfaces of the tibial liners were obtained with a coordinate measuring machine (OGP, Rochester, NY). Using a laser scanner with two micrometer depth accuracy, at least 400,000 measurement points were taken by investigator #1. Areal thickness changes were mapped for the lateral and medial sides with the help of an autonomous mathematical reconstruction algorithm and volume loss was calculated based on wear scar area and local thickness change. Investigator #2, blinded from these results, measured the minimum thickness of the medial and lateral tibial plateau using a dial indicator with a spherical tip radius of 3mm. Twenty-three short term retrievals (3 to 4 per implant size), removed due to infection and without any signs of wear, served as “unused” reference. Linear penetration was then calculated by subtracting the minimum thickness of each plateau from the average thickness of the reference components.