header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 249 - 249
1 Jul 2011
Sabo M Fay K Ferreira L McDonald C Johnson JA King GJ
Full Access

Purpose: Osteochondritis dissecans (OCD) of the capitellum most commonly affects adolescent pitchers and gymnasts, and presents with pain and mechanical symptoms. Fragment excision is the most commonly employed surgical treatment; however, patients with larger lesions have been reported to have poorer outcomes. It’s not clear whether this is due to increased contact pressures on the surrounding articular surface, or if fragment excision causes instability of the elbow. The purpose of this study was to determine if fragment excision of simulated OCD lesions of the capitellum alters kinematics and stability of the elbow.

Method: Nine fresh-frozen cadaveric arms were mounted in an upper extremity joint motion simulator, with cables attaching the tendons of the major muscle tendons to motors and pneumatic actuators. Electromagnetic receivers attached to the radius and ulna enabled quantification of the kinematics of both bones with respect to the humerus. Three-dimensional CT scans were used to plan lesions of 12.5% (mean 0.8cm2), 25%, 37.5%, 50%, and 100% (mean 6.2cm2) of the capitellar surface, which were marked on the capitellum using navigation. Lesions were created by burring through cartilage and subchondral bone. The arms were subjected to active and passive flexion in both the vertical and valgus-loaded positions, and passive forearm rotation in the vertical position.

Results: No significant differences in varus-valgus or rotational ulnohumeral kinematics were found between any of the simulated OCD lesions and the elbows with an intact articulation with active and passive flexion, regardless of forearm rotation and the orientation of the arm (p> 0.7). Radiocapitellar kinematics were not significantly affected during passive forearm rotation with the arm in the vertical position (p=0.07–0.6).

Conclusion: In this in-vitro biomechanical study even large simulated OCD lesions of the capitellum did not alter the kinematics or laxity of the elbow at either the radiocapitellar or ulnohumeral joints. These data suggest that excision of capitellar fragments not amenable to fixation can be considered without altering elbow kinematics or decreasing stability. Further study is required to examine other factors, such as altered contact stresses on the remaining articulation, that are thought to contribute to poorer outcomes in patients with larger lesions.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 269 - 269
1 Jul 2011
Sabo M Fay K Ferreira LM McDonald CP Johnson JA King GJ
Full Access

Purpose: Coronal shear fractures of the humerus include the Kocher-Lorenz fracture, an osteochondral fracture of the capitellar articular surface, the Hahn-Steinthal fracture, a substantial shear fragment, extension into the trochlea, and complete involvement of the capitellum and trochlea. If the fracture proves irreparable, it is not known what the impact of fragment excision would have on the biomechanics of the elbow. The purpose of this study was to examine the effect of the sequential loss of the capitellum and trochlea on the kinematics and stability of the elbow.

Method: Eight fresh-frozen cadaveric arms were mounted in an upper extremity joint testing system, with cables attaching the tendons of the major muscles to motors and pneumatic actuators. Electromagnetic receivers attached to the radius and ulna enabled quantification of the kinematics of both bones with respect to the humerus. The distal humeral articular surface was sequentially excised to replicate clinically relevant coronal shear fractures while leaving the collateral ligaments intact. Active flexion in both the vertical and valgus-loaded positions, and passive rotation in the vertical position was conducted for each excision.

Results: Excision of the capitellum had no effect on ulnohumeral stability or kinematics in both the vertical or valgus positions (p=1.0). Excision of the entire capitellum and trochlea led to significant valgus instability with the arm in the valgus position (p=0.01), while excision of the lateral trochlea led to increased valgus instability with pronated flexion in the valgus position (p=0.049). Progressive loss of the articular surface led to posterior, inferior, and medial displacement of the radial head with respect to the capitellum and increased external rotation of the ulna with respect to the humerus in the vertical position (p< 0.05).

Conclusion: Excision of the capitellum did not result in valgus or rotational instability, while excision of the trochlea resulted in multiplanar instability. The radial head displaced medially because it is constrained to the ulna by the annular ligament, and the ulna pivoted into valgus and external rotation on the residual trochlea and medial collateral ligament. In patients with coronal shear fractures, the trochlea must be reconstructed to prevent instability and the potential for secondary degenerative change.