header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 129 - 129
2 Jan 2024
Doyle S Winrow D Aregbesola T Martin J Pernevik E Kuzmenko V Howard L Thompson K Johnson M Coleman C
Full Access

In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for synthetic grafting substitutes (BGS) continues to grow while allograft bone grafts steadily decrease. Synthetic BGS are low in mechanical strength and bioactivity, inspiring the development of novel grafting materials, a traditionally laborious and expensive process. Here a novel BGS derived from sustainably grown coral was evaluated. Coral-derived scaffolds are a natural calcium carbonate bio-ceramic, which induces osteogenesis in bone marrow mesenchymal stem cells (MSCs), the cells responsible for maintaining bone homeostasis and orchestrating fracture repair. By 3D printing MSCs in coral-laden bioinks we utilise high throughput (HT) fabrication and evaluation of osteogenesis, overcoming the limitations of traditional screening methods.

MSC and coral-laden GelXA (CELLINK) bioinks were 3D printed in square bottom 96 well plates using a CELLINK BIO X printer with pneumatic adapter Samples were non-destructively monitored during the culture period, evaluating both the sample and the culture media for metabolism (PrestoBlue), cytotoxicity (lactose dehydrogenase (LDH)) and osteogenic differentiation (alkaline phosphatase (ALP)). Endpoint, destructive assays used included qRT-PCR and SEM imaging.

The inclusion of coral in the printed bioink was biocompatable with the MSCs, as reflected by maintained metabolism and low LDH release. The inclusion of coral induced osteogenic differentiation in the MSCs as seen by ALP secretion and increased RUNX2, collagen I and osteocalcin transcription.

Sustainably grown coral was successfully incorporated into bioinks, reproducibly 3D printed, non-destructively monitored throughout culture and induced osteogenic differentiation in MSCs. This HT fabrication and monitoring workflow offers a faster, less labour-intensive system for the translation of bone substitute materials to clinic.

Acknowledgements: This work was co-funded by Enterprise Ireland and Zoan Biomed through Innovation Partnership IP20221024.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 95 - 95
1 Dec 2016
Pathy R Dodwell E Green D Scher D Blanco J Doyle S Daluiski A Sink E
Full Access

There is currently no standardised complication grading classification routinely used for paediatric orthopaedic surgical procedures. The Clavien-Dindo classification used in general surgery was modified and validated in 2011 by Sink et al. and has been used regularly to classify complications following hip preservation surgery. The aim of this study was to adapt and validate Sink et al.'s modification of the Clavien-Dindo classification system for grading complications following surgical interventions of the upper and lower extremities and spine in paediatric orthopaedic patients.

Sink et al.'s modification of the Clavien-Dindo classification system was further modified for paediatric orthopaedic procedures. The modified grading scheme was based on the treatment required to treat the complication and the long term morbidity of the complication. Grade I complications do not require deviation from standard treatment. Grade II complications deviate from the normal post-operative course and require outpatient treatment. Grade III complications require investigations, re-admission or re-operation. Grade IV complications are limb or life threatening or have a potential for permanent disability (IVa: with no long term disability and IVb: with long-term disability). Grade V complications result in death. Forty-five complication scenarios were developed. Seven paediatric orthopaedic surgeons were trained to use the modified system and they each graded the scenarios on two occasions. The scenarios were presented in a different random order each time they were graded. Fleiss' and Cohen's k statistics were performed to test for inter-rater and intra-rater reliabilities, respectively.

The overall Fleiss' k value for inter-rater reliability was 0.772 (95% CI, 0.744–0.799). The weighted k was 0.765 (95% CI, 0.703–0.826) for Grade I, 0.692 (95% CI, 0.630–0.753) for Grade II, 0.733 (95% CI, 0.671–0.795) for Grade III, 0.657(95% CI, 0.595–0.719) for Grade IVa, 0.769 (95% CI, 0.707–0.83) for Grade IVb and 1.000 for Grade V (p value <0.001). The Cohen's k value for intra-rater reliability was 0.918 (95% CI, 0.887–0.947). These tests show that the adapted classification system has high inter- and intra-rater reliabilities for grading complications following paediatric orthopaedic surgery.

Given the high intra- and inter-rater reliability and simplicity of this system, adoption of this grading scheme as a standard of reporting complications in paediatric orthopaedic surgery could be considered. Since the evaluation of surgical outcomes should include the ability to reliably grade surgical complications, this reproducible, reliable system to assess paediatric surgical complications will be a valuable tool for improving surgical practices and patient outcomes.