Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 37 - 37
1 Feb 2017
Beckmann N Jaeger S Janoszka M Klotz M Schwarze M Bitsch R
Full Access

Introduction

Revision Total Hip Arthroplasties (THA) have a significantly higher failure rate than primary THA's and the most common cause is aseptic loosening of the cup. To reduce this incidence of loosening various porous metal implants with a rough surface and a porous architecture have been developed which are said to increase early osteointegration. However, for successful osteointegration a minimal micromotion between the implant and the host bone (primary stability) is beneficial. It has not been previously determined if the primary stability for the new Gription® titanium cup differs from that of the old Porocoat® titanium cup.

Material and Methods

In 10 cadaveric pelvises, divided into 20 hemipelvises, bilateral THA's were performed by an experienced surgeon (RGB) following the implant manufacturer's instructions and with the original surgical instruments provided by the company. In randomized fashion the well established Porocoat® titanium implant was implanted on one side of each each hemipelvis whereas on the corresponding opposite side the modified implant with a Gription® coating was inserted. Radiographs were taken to confirm satisfactory operative results. Subsequently, the hemipelvis and cups were placed in a biomechanical testing machine and subjected to physiological cyclic loading.

Three-dimensonal loading corresponded to 30% of the load experienced in normal gait was imposed reflecting the limited weight bearing generally prescribed postoperatively. The dynamic testing took place in a multi-axial testing machine for 1000 cycles. Relative motion and micromotion were quantified using an optical measurement device (Pontos, GOM mbh, Braunschweig, Germany). Statistical evaluation was performed using the Wilcoxon signed-rank test.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 40 - 40
1 Jan 2016
Beckmann N Bitsch R Seeger J Klotz M Reiner T Kretzer JP Jaeger S
Full Access

Introduction

The frequency of revision hip arthroplasty is increasing with the increasing life expectancy and number of individuals treated with joint replacement. Newer porous implants have been introduced which may provide better treatment options for revision arthroplasty. These may require cementation to other prosthesis components and occasionally to bone, however, there is currently no information on how these porous implants interface with cement.

Materials and Methods

Cylindrical bone (control group) and porous metal probes with a diameter and height of 10mm were created and subsequently cemented in a standardized setting. These were placed under tensile and torsional loading scenarios.

In this experimental study, 10 human femoral heads were used to create 20 cylindrical probes with a diameter and height of 10mm. One side was tapered to 6mm for cementation and interface evaluation. A further set of 20 probes of a porous metal implant (Trabecular Metal®) was created with the same geometry. After the probes were created and lavaged, they were cemented at the tapered surface using a medium viscosity cement at a constant cementation pressure (1.2N/mm2). The setup allowed for comparison of the porous metal/cement interface (group A) with the well-studied control group interface bone/cement (group B).

The maximal interface stability of groups A and B were evaluated under tensile and rotational loading scenarios and the cement penetration was measured.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 114 - 114
1 Jan 2016
Klotz M Jaeger S Kretzer JP Beckmann N Reiner T Thomsen M Bitsch R
Full Access

As there are many reports describing avascular reactions to metal debris (ARMD) after Metal-on-Metal Hip Arthroplasty (MoMHA), the use of MoMHA, especially hip resurfacing, is decreasing worldwide. In cases of ARMD or a rise of metal ion blood levels, revision is commended even in pain free patients with a well integrated implant. The revision of a well integrated implant will cause bone loss. As most of the patients with a hip resurfacing are young and a good bone stock is desirable for further revision surgeries, the purpose of this study was to evaluate the stability of a cemented polyethylene cup in a metal hip resurfacing cup. Two different hip resurfacing systems were investigated in this study (ASR™, DePuy Orthopaedics, Leatherhead, UK; Cormet™, Corin Group, Cirencester, UK).

Six different groups were formed according to the treatment and preparation of the cement-cup-interface (table 1). Before instilling cement in groups 1, 3, 5 the surface, which was contaminated with blood, was cleaned just using a gauze bandage. In groups 2, 4, 6 saline, polyhexanid and a gauze were used to clean the surface prior to the cement application. In group one and two the polyethylene cup (PE) was cemented either into Cormet™ or ASR™, just the ASR™ was further investigated in group three to six. A monoaxial load was applied while the cup was fixed with 45 degrees inclination (group 1–4) and 90 degrees inclination (group 5, 6: rotatory stability) and the failure torque was measured. In contrast to group 1 and 2, the cement penetrated the peripheral groove of the ASR™ in groups 3–6. The mean failure torque of five tests for each group was compared between the groups and the implants.

The ASR™ showed mean failure torque of 0.1 Nm in group one, of 0.14 Nm in group two, of 56.9 Nm in group three, of 61.5 Nm in group four, of 2.96 Nm in group five and of 3.04 Nm in group six. The mean failure torque of the Cormet™ was 0.14 Nm both in groups one and two (table 2). In groups 1–6 there were no significant differences between the different preparations of the interface. Furthermore, in groups 1 and 2 there were no significant differences between the Cormet™ and the ASR™. The mean failure torque of group 4 was significant increased compared to group 3 (p=0.008).

We saw an early failure of the cement fixation due to the smooth surface of the Cormet™ and the ASR™ components in groups 1, 2, 5, 6. In contrast to other hip resurfacing cups the ASR™ has a peripheral groove, which was not cemented except in groups 3 and 4 and therefore the lever-out failure torque was significant increased in these groups. Nevertheless, the groove did not provide stability of the cement-PE compound in case of rotatory movements. In conclusion we do not recommend the use of these methods in clinical routine. The complete removal of hip resurfacing components seems to be the most reasonable procedure.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 500 - 500
1 Dec 2013
Klotz M Beckmann N Reiner T Jaeger S Bitsch R
Full Access

In cases of poor bone quality intraoperative torque measurement might be an alternative to preoperative dual energy x-ray absorptiometry (DXA) to assess bone quality in Total Hip Arthroplasty (THA). 14 paired fresh frozen human femurs were included for trabecular peak torque measurement. We evaluated an existing intraoperative torque measurement method to assess bone quality and bone strength. We modified the approach to use this method in total hip arthroplasty (THA), which has not been published before. Since there are several approaches used in THA to exposure the hip joint, we decided to prefer the measurement in the femoral head which allows every surgeon to perform this measurement. Here a 6.5 × 23 mm blade was inserted into the proximal femur without harming the lateral cortical bone (figure 1). Further tests of the proximal femur evaluated the results of this new method: DXA, micro-computed tomography (μCT) and biomechanical load tests. Basic statistical analyses and multiple regressions were done. In the femoral head mean trabecular peak torque was 4.38 ± 1.86 Nm. These values showed a strong correlation with the values of the DXA, the μCT and the biomechanical load test. In comparison to the bone mineral density captured by DXA, the results of the intraoperative torque measurement showed a superior correlation with high sensitive bone quality evaluating methods (mechanical load tests and micro-computed tomography). Hence, the use of this intraoperative torque measurement seems to be more accurate in evaluating bone strength and bone quality than DXA during THA. The torque measurement provides sensitive information about the bone strength, which may affect the choice of implant in cases of poor bone stock and osteoporosis. In clinical use the surgeon may alter the prosthesis if the device indicates poor bone quality. Furthermore, we assume that the disadvantages associated with DXA scans like radiation exposure or errors caused by potential extraosteal sclerosis and interindividual soft-tissue artifacts could be excluded.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 97 - 97
1 Sep 2012
Kretzer JP Moradi B Reinders J Jaeger S Bitsch R Sonntag R
Full Access

Introduction

Failure of total knee arthroplasty (TKA) is mainly caused by biological reactions against wear particles generated at the implant. So far, wear has been mainly attributed to polyethylene (PE) and much effort has been put into understanding and optimizing the wear mechanism of PE in recent years. However, evaluation of metal wear particles and ion release in TKR has been neglected so far although the implants present large metal surface areas. In the present study we aimed to analyse the wear performance of TKA and to study the kinetics of metal ion and particle release. We hypnotized that due to abrasion and corrosion TKA will release relevant levels of Cobalt (Co), Chromium (Cr), Molybdenum (Mo) and Titanium (Ti).

Methods

Implants were subjected to an in-vitro simulation applying physiological loadings and motions for 5 million walking cycles. Wear processes were determined gravimetrically and by measuring the release of Co, Cr, Mo and Ti ions using HR-ICP-MS. Surface alterations were determined through surface roughness measurements.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 152 - 152
1 Sep 2012
Reinders J Sonntag R Nadorf J Bitsch R Rieger JS Kretzer JP
Full Access

Background

Polyethylene (PE) as a bearing material for total joint replacements (TJR) represents the golden standard for the past forty years. However, over the past decade it becomes apparent that PE wear and the biological response to wear products are the limiting factor for the longevity of TJRs. For this reason research has focused onto PE wear particle analysis. A particle analysis highly depends on the methodological work and results often show discrepancies between different research groups. From there, our hypothesis was, that an often unattended influencing factor is the optical magnification which has been used for particle analyses.

Material and Methods

In the present study samples of a previous conducted knee wear simulator test were used. Wear particles were isolated from the bovine serum using an established method1. Briefly the serum was digested with hydrochloric acid and a continuous stirring and heating. Particles were filtered onto 20nm alumina filters and analyzed using high resolution field emission gun scanning electron microscopy (FEG-SEM). Filters were analyzed on the same points using three different magnifications: 5000, 15000 and 30000. To describe the size and morphology of the particles the equivalent circle diameter (ECD), aspect ratio (AR), roundness (R) and form factor (FF) were specified according to ASTM F 1877-05. The estimated total number (ETN) of particles was calculated based on the number of particles recovered on the filter, the analyzed area, the dilution, evaporation and the total serum volume.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 153 - 153
1 Sep 2012
Reinders J Sonntag R Bitsch R Jaeger S Rieger JS Kretzer JP
Full Access

Background

Polyethylene (PE) wear is known as a limiting factor for total knee replacements (TKR). Thus, preclinical wear testing is an important tool to assess the suitability of new designs and new materials. However, standardized testing (e.g. according to ISO 14243) does not cover the individual situation in the patient. Consequentially, this study investigates the following two parameters:

Testing-Frequency: Patients with TKR's show a humiliated walking frequency (down to 0,5Hz) compared to standardized testing (1Hz±0.1). In the first part of this study, the influence of a decreased test frequency on the PE wear behavior is investigated

Interval of lubricant replacement: For in-vitro testing bovine serum is used as a substitute for the synovial fluid. Physiologically a continuous regeneration and removement of destructed components is taking place. In contrast, for simulator testing the bovine serum is typically changed completely every 500.000 cycles/steps. Therefore the goal of the second part of this study was to test if the serum replacing interval affects the PE wear behavior.

Material and Methods

Wear tests were conducted on an AMTI force controlled knee simulator. A cruciate substituting (ultracongruent) implant design (TC Plus, Smith & Nephew, Rotkreuz, Switzerland) was used.

First, a reference wear study with a test frequency of 1Hz and a lubricant replacement interval (RI) of 500.000 cycles according to ISO 14243-1:2009 was carried out. Tests were run to a total of 5 million cycles.

A second wear test was run with a reduced frequency of 0.5 Hz. The reduced frequency resulted in an extended testing period for the same number of cycles. To exclude an influence of the extended time period, the lubricant was changed, in the first half of testing every 500.000 cycles corresponding to 12 days (cycle depending (CD)), and in the second part every 250.000 cycles corresponding to 6 days (time depending (TD)). Tests were run to a total of 3 million cycles.

A third test was run with a frequency of 1 Hz. For this test a reduced serum RI of 150.000 cycles was choosen. This test was run to a total of 1.500.000 cycles.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 117 - 117
1 Jun 2012
Kretzer JP Jaeger S Reinders J Jakubowitz E Thomsen M Bitsch R
Full Access

Introduction

Infection following total joint arthroplasty is a major and devastating complication. After removal of the initial prosthesis, an antibiotic-impregnated cement spacer is inserted for approx. three months. Treatment is completed by a second stage revision arthroplasty.

Up to now, spacers are produced from conventional bone cements that contain abrasive radio-opaque substances like zirconium dioxide or barium sulphate. As long as spacer wear products (cement particles containing these hard substances) are not fully removed during the final revision surgery they may enter the articulating surfaces of the revision implant leading to third body wear.

In order to reduce the formation of reactive wear particles, a special cement (Copal(r) spacem) without abrasive zirconium dioxide or barium sulphate was developed.

To date, no comparative tribological data for cement spacers have been published. Hence, we carried out a study on the wear properties of Copal(r) spacem (with and without gentamicin) in comparison to conventional bone cements (Palacos(r) R and SmartSet(r) GHV).

Material and Methods

In order to assure reproducible forms of the femoral and tibial components, silicon rubber moulds were produced and filled with the respective cement. Force-controlled simulation was carried out on an AMTI knee simulator (Figure I). The test parameters were in accordance to ISO 14243-1 with a 50% reduced axial force (partial weight bearing). Tests were carried out at 37 °C in closed chambers filled with circulating calf serum. Tests were run for 240,000 cycles (representing the average step rate during 6-8 weeks) at a frequency of 1 Hz. For wear analysis, digital photographs of the spacer were taken at the beginning and at the end of the testing period. The areas of wear scars were measured by the means of a digital image processing software.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 295 - 295
1 May 2010
Bitsch R Loidolt T Lürssen M Jäger S Heisel C Schmalzried T
Full Access

Introduction: In recent retrieval studies over-penetration of cement, incomplete seating of the prosthesis with a resultant polar cement mass, or both, have been associated with femoral failures of current generation resurfacing arthroplasties. We developed a laboratory model to analyze differences in cement penetration, cement pressures and interface temperatures for hip resurfacing arthroplasty.

Materials and Methods: A carbon foam was demonstrated to closely simulate human femoral heads. Custom aluminum shells were made by DePuy with the same inner geometry as the femoral resurfacing components. (ASR™ system, Size 49, DePuy; Leeds, England).

Analyses of six different cementing techniques (cemtech) were performed using high viscosity (HVC) (Smart Set GHV, DePuy, Blackpool, England) and low viscosity cement (LVC) (Endurance, DePuy, Blackpool, England):

Manual application HVC

¼filling of the component with LVC and manual appl.

¼filling HVC and manual appl.

½filling LVC

½filling HVC

Complete filling with LVC

A force of 150N was used to press five shells in each cemtech group on foam specimens. During seating cement pressures and polymerization heat 5 mm under the foam surface were measured.

Specimens were cut into quarters, surfaces were digitalized and cement penetration areas and depths were quantified using a pixel-analysis-software. The effects of the cemtech were examined by Kruscal-Wallis and Mann-Whitney-U-tests (two-sided, p-value< 0.05, SPSS)

Results: The mean cement pressures increased going from cemtech A to E. HVC cemtech C and E showed higher pressures than the comparable LVC cemtech B and D.

Maximum temperatures were A) 36.0± 4.1°C, B) 45.0±5.7°C, C) 36.2±4.2°C, D) 53.5±2.5°C, E) 48.3±6.5°C and F) 53.2±12.6°C. D, E and F exceeded 50°C.

A provided even cement penetration over the available fixation area without involvement of the internal area and the stem. Cemtech that used LVC cement (B, D and F) showed higher interior area cement contents than HVC (A, E and C). The cement content in the interior area was A) 39.3±26.4mm2, B) 72.1±16.9mm2, C) 37.7±10.5mm2, D) 99.0±24.6mm2, E) 67.5±15.6mm2 and F) 121.0±29.0mm2.

A showed mainly complete seating with a cement mantle thickness of 0.5±0.7 mm. All other cemtech had incomplete seating in all specimens with significantly thicker polar cement mantles (p=0.032) up to a maximum of 4.6±1.2mm for E.

Discussion: Component filling cemtech and LVC resulted in variable degrees of over-penetration, exposure to high temperatures or a risk for incomplete seating, which have been associated with bone necrosis and early fracture. The use of the manual application and HVC cement showed clear advantages in our model. It was possible to utilize all of the available fixation area without negative effects.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 317 - 318
1 May 2010
Bitsch R Jäger S Mohr G Lürssen M Seeger J Clarius M
Full Access

Introduction: The medial unicompartmental knee prosthesis (UKA) is less invasive than total knee arthroplasty (TKA) and preserves undamaged structures of the joint. The range of movement and recovery are better in UKA, while postoperative pain reduction is at least equal to TKA. UKA have a higher revision rate than TKA (15% vs 10% after 10 years). One main reason for revision is mechanical loosening1. There is a paucity of information regarding cement fixation of UKA. We compared jet lavage to conventional lavage with focus on cement pressures, interface temperatures and cement penetration.

Materials and Methods: UKA was performed in 10 paired entire human cadaver legs (Oxford Phase III, Biomet, Dordrecht, NL). Customized tibial implants and a pressure probe insert were used to measure the cement pressure anterior, posterior and near the implant fin during implantation and polymerisation. A drilling and fixation jig was used for standardized positioning of the three temperature probes. The polymerization heat was measured 5 mm below the bone surface at the medial and lateral plateau as well as under the fin. The same cementing technique was performed for all knees using Refobacin® Bone Cement R. One side of the paired knees was cleaned using jet lavage, contra lateral cleaning was done with conventional lavage. The lavage volume was equal for both

Methods: AP radiographs were taken and digitalized to quantify the cement penetration areas and depths, using a pixel-analysis-software. Group comparisons were done with the Wilcoxon-Test using SPSS (SPSS Inc., Chicago, Illinois).

Results: Average cement pressure under the tibial implant is significantly higher for conventional lavage (avg cement pressure 25.69 ± 17.85 kPa, p= 0.005) than for jet lavage (avg cement pressure 13.28 ± 12.82 kPa). Mean temperature increase measured 5 mm below the bone surface medial and lateral, as well as under the implant fin, were statistically significant higher for the cementing technique with jet lavage (lat. 14.10 ± 5.72°C, p= 0.018/med. 8.49 ± 4.20°C, p= 0.176/fin 5.95 ± 1.92°C, p= 0.063) than for the conventional lavage (lat. 9.42 ± 5.17°C/med. 6.42 ± 2.21°C/fin 3.96 ± 2.03°C). On AP radiographs, cement penetration areas under the tibial implant were significantly higher for jet lavage (penetration area: 122.15 ± 33.94 sq mm, p= 0.046) than for conventional lavage (penetration area: 89.82 ± 23.92 sq mm).

Discussion: The use of jet lavage showed clear advantages in our cadaver studies. Jet lavage resulted in higher cement penetration despite of lower cement pressures under the tibial implant. The higher cement penetration lead to higher interface temperatures but exposure to high temperatures over 50 °C with a risk for bone necrosis could not be measured.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 54 - 54
1 Mar 2006
Thomsen M Lee C Bitsch R Heisel C
Full Access

Introduction: Aim of the study was to investigate the fixation patterns of cementless short-stem designs compared to the fixation patterns of well-known conventional stems artificially shortened in several steps.

Method: Primary rotational stability and tilting were measured in a standardized and validated simulator set-up. The tested short-stem designs included the Mayo (Zimmer), the CFP (Link), and the CUT (Eska). The “conventional” group consisted of the ABG (Stryker), the S-Rom (DePuy), and the G2 (DePuy). Additionally, these systems were tested when gradually shortened in several steps.

Results: The Mayo stem showed a 2/3 fixation pattern with 11.5 mdeg/Nm relative movement at the level of the lesser trochanter. The CFP showed a more distal fixation with 6.8 mdeg/Nm, and the CUT a proximal fixation with 7.6 mdeg/Nm. The Mayo and the CFP adapted to the femoral canal during ventro-dorsal tilting. The CUT tilted like a rigid body. This pattern of tilting was also shown by the ABG after it was shortened from 12.5 cm to 8.5 cm, by the G2 after a reduction from 15 to 6 cm, and the S-Rom after shortening from 18 to 6.9 cm.

Discussion: The shortened conventional stems showed a similar fixation pattern compared to the short-stem designs, the rotational stability was even better than with the Mayo and CFP stem. The CUT design acts like an extensively shortened conventional stem and seems to tilt in the femoral canal like a rigid body with a pressure increase at the lateral cortex of the femur.