header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 48 - 48
1 Jan 2016
Todo M Afzan M Anuar M Nagamine R Hirokawa S
Full Access

Introduction

Mobility at insert-tray articulations in mobile bearing knee implant accommodates lower cross-shear at polyethylene (PE) insert, which in turn reduces wear and delamination as well as decreasing constraint forces at implant-bone interfaces. Though, clinical studies disclosed damage due to wear has occurred at these mobile bearing articulations. The primary goal of this study is to investigate the effect of second articulations bearing mobility and surface friction at insert-tray interfaces to stress states at tibial post during deep flexion motion.

Method & Analysis

Figure 1 shows the 3-D computational aided drawing model and finite element model of implant used in this study. LS-DYNA software was employed to develop the dynamic model. Four conditions of models were tested including fixed bearing, as well as models with coefficients of friction of 0.04, 0.10 and 0.15 at tibial-tray interfaces to represent healthy and with debris appearance. A pair of nonlinear springs was positioned both anteriorly and posteriorly to represent ligamentous constraint. The dynamic model was developed to perform position driven motion from 0° to 135° of flexion angle with 0°, 10° and 15° of tibial rotation. The prosthesis components were subjected with a deep squatting force.