header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 53 - 53
1 Jan 2017
Verstraete M Meere P Salvadore G Victor J Walker P
Full Access

A correct ligament loading following TKA surgery is believed to minimize instability and improve patient satisfaction. The evaluation of the ligament stress or strain is however impractical in a surgical setting. Alternatively, tibial trial components containing force sensors have the potential to indirectly assess the ligament loading. These instrumented components quantify the medial and lateral forces in the tibiofemoral joint. Although this method finds clinical application already, the target values for both the force magnitude and medial / lateral force ratio under surgical conditions remain uncertain.

A total of eight non-arthritic cadaveric knees have been tested mimicking surgical conditions. Therefore, the specimens are mounted in a custom knee simulator. This simulator allows to test full lower limb specimens, providing kinematic freedom throughout the range of motion. Knee flexion is obtained by lifting the femur (thigh pull). Knee kinematics are simultaneously recorded by means of a navigation system and based on the mechanical axis of the femur and tibia.

In addition, the load transferred through the medial and lateral compartment of the knee is monitored. Therefore, a 2.4 mm thick sawing blade is used to machine a slot in the tibia perpendicular to the mechanical axis, at the location of the tibial cut in TKA surgery. A complete disconnection was thereby assured between the tibial plateau and the distal tibia. To fill the created gap, custom 3D printed shims were inserted. Through their specific geometry, these shims create a load deviation between two Tekscan pressure pads on the medial and lateral side. Following the insertion of the shims, the knee was closed before performing the kinematic and kinetic tests.

Seven specimens showed a limited varus throughout the range of motion (ranging from 1° to 7° varus). The other knee was in valgus (4° valgus). Amongst varus knees, the results were very consistent, indicating high loads in full extension. Subsequently, the loads decrease as the knee flexes and eventually vanishes on the lateral side. This leads to consistently high compartmental load ratios (medial load / total load) in flexion.

In full extension the screw-home mechanism results in increased loads, both medially and laterally. Upon flexion, the lateral loads disappear. This is attributed to slackening of the lateral collateral ligament, in turn linked to the femoral rollback and slope of the lateral compartment. The isometry of the medial collateral ligament contributes on the other hand to the near-constant load in the medial compartment. The above particularly applies for varus knees. The single valgus knee tested indicated a higher load transmission by the lateral compartment, potentially attributed to a contracture of the lateral structures.

With respect to TKA surgery, these findings are particularly relevant when considering anatomically designed implants. For those implants, this study concludes that a tighter medial compartment reflects that of healthy varus knees. Be aware however that in full extension, higher and up to equal loads can be acceptable for the medial and lateral compartment.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 96 - 96
1 Jan 2017
Salvadore G Verstraete M Meere P Victor J Walker P
Full Access

During TKA surgery, the usual goal is to achieve equal balancing between the lateral and medial side, which can be achieved by ligament releases or “pie crusting”. However little is known regarding a relationship between the balancing forces on the medial and lateral plateaus during TKA surgery, and the varus and valgus and rotational laxities when the TKA components are inserted. It seems preferable that the laxity after TKA is the same as for the normal intact knee. Hence the first aim of this study was to compare the laxity envelope of a native knee, with the same knee after TKA surgery. The second aim was to examine the relationship between the Varus-Valgus (VV) laxity and the contact forces on the tibial plateau.

A special rig that reproduced surgical conditions and fit onto an operating table was designed (Verstraete et al. 2015). The rig allows application of a constant varus/valgus moment, and an internal-external (IE) torque. A series of heel push tests under these loading conditions were performed on 12 non-arthritic half semibodies hip-to-toe cadaveric specimens. Five were used for method development. To measure laxities, the flexion angle, the VV and the IE angle were measured using a navigation system. After testing the native knee, a TKA was performed using the Journey II BCS implant, the navigation assuring correct alignments. Soft tissue balancing was achieved by measuring compressive forces on the lateral and medial condyles with an instrumented tibial trial (Orthosensor, Dania Beach, Florida). At completion of the procedure, the laxity tests were repeated for VV and IE rotation and the contact forces on the tibial plateau were recorded, for the full range of flexion.

The average of the varus-valgus and the IE laxity envelope is plotted for the native (yellow), the TKA (pink) and the overlap between the two (orange). The average for six specimens of the contact force ratio (medial/medial+lateral force) during the varus and valgus test is plotted as a function of the laxity for each flexion angle.

The Journey II implant replicated the VV laxity of the native knee except for up to 3 degrees more valgus in high flexion. For the IE, the TKA was equal in internal rotation, but up to 5 degrees more constrained in varus in mid range. Plotting contact force ratio against VV laxity, as expected during the varus test the forces were clustered in a 0.85–0.95 ratio, implying predominant medial force with likely lateral lift-off. For the valgus test, the force ratio is more spread out, with all the values below 0.6. This could be due to the different stiffness of the MCL and LCL ligaments which are stressed during the VV test. During both tests the laxity increases progressively with flexion angle. Evidently the geometry knee reproduces more lateral laxity at higher flexion as in the anatomic situation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 93 - 93
1 Jan 2017
Salvadore G Meere P Chu L Zhou X Walker P
Full Access

There are many factors which contribute to function after TKA. In this study we focus on the effect of varus-valgus (VV) balancing measured externally. A loose knee can show instability (Sharkey 2014) while too tight, flexion can be limited. Equal lateral-medial balancing at surgery leads to a better result (Unitt 2008; Gustke 2014), which is generally the surgical goal. Indeed similar varus and valgus laxity angles have been found in most studies in vitro (Markolf 2015; Boguszewski 2015) and in vivo (Schultz 2007; Clarke 2016; Heesterbeek 2008). The angular ranges have been 3–5 degrees at 10–15 Nm of knee moment, females having the higher angles. The goal of this study was to measure the varus and valgus laxity, as well as the functional outcome scores, of two cohorts; well-functioning total knees after at least one year follow-up, and subjects with healthy knees in a similar age group to the TKR's. Our hypothesis was that the results will be equal in the two groups.

50 normal subjects average age 66 (27 male, 23 female) and 50 TKA at 1 year follow-up minimum average age 68 years (16 male, 34 female) were recruited in this IRB study. The TKA's were performed by one surgeon (PAM) of one TKA design, balancing by gap equalization. Subjects completed a KSS evaluation form to determine functional, objective, and satisfaction scores. Varus and valgus measurements were made using the Smart Knee Fixture (Borukhov 2016) at 20 deg flexion with a moment of 10 Nm.

The statistical results demonstrated that there was no significant difference in either varus or valgus laxity between the two groups (p= 0.9, 0.3 respectively). Pearson's correlation coefficient between varus and valgus laxity of the healthy group was 0.42, while for the TKA group was 0.55. In both cohorts varus laxity was significant higher than valgus laxity (p= 0.001e−5 for healthy subjects and p=0.0001 for TKA). The healthy group had higher functional and objective KSS scores (p= 0.005e−4, and p=0.004e−5 respectively), but the same satisfaction scores as the TKA (p=0.3). No correlation was found between the total laxity of the TKA group and the KSS scores (functional, objective and satisfaction). Total laxity in females was significantly higher than in males in the healthy group, but no differences was found in the TKA group.

The hypothesis of equal varus and valgus angles in the 2 groups was supported. The larger varus angle implied a less stiff lateral collateral compared with the medial collateral. If the TKA's were balanced equally at surgery, it is possible there was ligament remodeling over time. However the functional scores were inferior for the TKA compared with normal. This finding has not been highlighted in the literature so far. The causes could include weak musculature (Yoshida 2013), non-physiologic kinematics due to the TKA design, or the use of rigid materials in the TKA. The result presents a challenge to improve outcomes after TKA.