header advert
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 124 - 124
1 Feb 2017
Fujii Y Fujiwara K Endou H Tetsunaga T Miyake T Yamada K Ozaki T Abe N Sugita N Mitsuishi M Takayuki I Nakashima Y
Full Access

Introduction

CT-based navigation system in total hip arthroplasty (THA) is widely used to achieve accurate implant placement. Now, we developed our own CT-based navigation system originally, and since then we have been conducting various analysis in order to use the system more effectively. We compared the accuracy of registration with this navigation system and land mark matching type navigation system. In this study, we evaluated the influence of the surgical approach to the accuracy of registration.

Methods

Between June 2015 and February 2016, 28 consecutive uncemented THAs were performed in 26 patients. The preoperative diagnosis was osteoarthritis in 20 hips, osteonecrosis of the femoral hips in 5, and rheumatoid arthritis in 3. The newly developed navigation system was a CT based, surface matching type navigation system. We used newly developed navigation system and commercially available land-mark type CT-based navigation system in the setting of acetabular sockets under the same condition. After we fixed the cementless cup, we measured the cup setting angle of inclination and anteversion on each navigation system. Postoperative assessment was performed using CT one week after the operation, and measured the actual angle of the cup. Approach of operations were performed via posterolateral approach in 14 hips, and Hardinge approach in 14 hips. We calculated the absolute value of the cup angle difference between intra-operative value and post-operative value with each navigation system and compared the accuracy between each navigation system and surgical approach.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 125 - 125
1 Feb 2017
Fujiwara K Fujii Y Miyake T Yamada K Tetsunaga T Endou H Ozaki T
Full Access

Objectives

Few reports were shown about the position of the cup in total hip arthroplasty (THA) with CT-based navigation system. We use minimally invasive surgery (MIS) technique when we perform cementless THA and the correct settings of cups are sometimes difficult in MIS. So we use CT-based navigation system for put implants with correct angles and positions. We evaluated the depth of cup which was shown on intra-operative navigation system.

Materials and Methods

We treated 30 hips in 29 patients (1 male and 28 females) by navigated THA. 21 osteoarthritis hips, 6 rheumatoid arthritis hips and 3 idiopathic osteonecrosis hips were performed THA with VectorVision Hip navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Japan Medical Materials, Osaka). Appropriate angles and positions of cups were decided on the 3D model of pelvis before operation. According to the preoperative planning, we put the implants with navigation system. We correct the pelvic inclination angle and measured the depth of cups with 3D template software.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 142 - 142
1 May 2016
Fujii Y Fujiwara K Endou H Tetsunaga T Ozaki T Abe N Sugita N Mitsuishi M Inoue T Nakashima Y
Full Access

Object

CT-based navigation system in total hip arthroplasty(THA) is widely used to achieve accurate implant placement. However, its internal structure was a trade secret. Therefore, it was hard to analyze optimal reference points. Now, we developed our own CT-based navigation system originally, and since then we have been conducting various analyses in order to use the system more effectively. The purpose of this study was to analyze the optimal area and the number of registration points, which enables to move initial errors into the acceptable range.

Methods

We set the anterior pelvic plane(APP) as the reference plane, and defined the coordinates as follows: X-axis for external direction, Y-axis for anterior direction, and Z-axis for proximal direction. We made pelvic bone models after THA, a normal shape and acetabular dysplasia model, and performed registration using an originally developed CT based navigation system. At first, we registered point paired matching at 4 points, and surface matching was performed at 53 points, which were placed around the acetabulum. 20 points were on anterosuperior, 10 points were on posterosuperior, 20 points were on posterior around the acetabulum, and 3 points were on the pubis. We selected surface matching points based on the actual operation approach, calculated the accuracy of the error correction, and searched the optimal area and the number of surface matching points.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 143 - 143
1 May 2016
Fujiwara K Endou H Tetsunaga T Kagawa Y Fujii Y Ozaki T
Full Access

Materials and Methods

We treated 60 hips in 60 patients (8 males and 52 females) with cementless THA that were performed from January 2007 to December 2009 in our hospital. 48 osteoarthritis hips, 5 rheumatoid arthritis hips and 7 idiopathic osteonecrosis hips were included. All patients were performed THA with VectorVision Hip navigation system (BrainLAB, Feldkirchen, Germany). We used AMS HA cups and PerFix stems (KYOCERA Medical co., Osaka, Japan). The mean age of surgery was 61 years old (35–79 years old). The pelvic inclination angles (PIA) were measured with anteroposterior radiographic image in accordance with the Doiguchi's method.

Results

The amount of change of the pelvic inclination angle between supine and standing position was 0.6 degrees prior to surgery, 0.7 degree at 1 year after surgery and 2.4 degrees at 5 years after surgery. 7 patients prior to surgery, 7 patient at 1 year after surgery and 18 patient at 5 year after surgery changed more than 5 degrees between supine and standing position. The pelvic inclination angles of 23 patients prior to surgery, 19 patients at 1 year after surgery and 35 patients at 5 years after surgery changed in the retroverted direction with posture change. It tended to increase after surgery.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 14 - 14
1 Jan 2016
Shiota N Sato T Tetsunaga T Yamada K
Full Access

Purpose

When we perform total knee arthroplasty (TKA), the accurate osteotomy and implant setting is important as follows to improve long-term results. As means to perform osteotomy exactly, patient specific surgical instruments (PSI) patient specific surgical instruments planning based on pre-operative MRI (Signature, Materialise) and Image-free navigation system (Navi: Knee unlimited; BrainLAB) exist. However, there is not the report to compare which is exact for the same patient at the same time using two methods. We report to compare the osteotomy plans by two methods.

Materials

Nine cases of TKA (Vanguard Complete Knee System, PS, BIOMET) operated on by one operator in our hospital from October 2012 to September 2013. 78.0 years average age (71–81 years old), sex was 6 cases women, 3 men.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 208 - 208
1 Mar 2013
Kagawa Y Fujiwara K Endou H Okada Y Tetsunaga T Mitani S Ozaki T
Full Access

Purpose

CentPillar GB HA stem (stryker®) is developed as the stem fitting the Japanese femur, and now there is CentPillar TMZF HA stem (stryker®) as the improvement type of the stem by coating the PureFix HA with plasma spray. We observed the factors which influenced on the stem subsidence between the two-type stems.

Materials and Methods

We intended for 26 hips 23 patients that we performed total hip arthroplasty (THA) during the period between January 2005 and June 2009 and were able to follow up more than three years. 10 males 11 hips and 13 females 15 hips, the mean age at the time of surgery was 56.5 (range, 29–74) years old, and primary diseases were osteoarthritis (OA) in 17 hips, Idiopathic Osteonecrosis of Femoral Head (ION) in six hips, and rheumatoid arthritis (RA) in three hips. 16 hips were treated with the CentPillar GB HA stem (G group), and 10 hips were performed with the CentPillar TMZF HA stem (T group). The examination items are the stem size, the canal fill ratio of the stem (the top of lesser trochanter, the bottom of lesser trochanter, the distal portion of the stem) and the stem alignment (on anteroposterior radiograph and Lauenstein view).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 135 - 135
1 May 2012
Tetsunaga T Furumatsu T Abe N Ozaki T Naruse K Nishida K
Full Access

Biomechanical stimuli have fundamental roles in the maintenance and remodeling of ligaments including collagen gene expressions. Mechanical stretching signals are mainly transduced by cell adhesion molecules such as integrins. However, the relationships between stress-induced collagen expressions and integrin-mediated cellular behaviors are still unclear in anterior cruciate ligament cells.

Human ACL cells were harvested from ligament samples donated by patients who underwent total knee arthroplasties with informed consents. Interface cells were isolated from the 5-mm-end of ACL. Midsubstance cells were cultured from the middle part of ACL. The cells were seeded onto stretch chambers (2Ä−2 cm, 50,000 cells/chamber) and uni-axial cyclic mechanical stretch (0.5 Hz, 7%) was applied for 2 h using a ST140. RNA samples were reverse-transcripted and quantitative real-time RT-PCR analysis were performed. To inhibit the function of integrin alphaVbeta3 subunit or alpha5 in stretching experiments, anti-human integrin alphaVbeta3 and alpha5 functional blocking antibodies (alphaVbeta3: 20 mg/ml, alpha5: 4 mg/ml) were used. To investigate the cellular attachments responding to mechanical stretch, we observed the distribution of integrins and stress fibers in both ACL cells.

The shape of midsubstance cells showed spindle and fibroblastic cellular morphologies. On the other hand, the interface cells displayed chondroblastic appearances such as small and triangular morphologies. The expressions of COL1A1, COL2A1, and COL3A1 genes were detected in the tissue RNAs of interface zones. However, these expressions were decreased in cultured interface cells. In midsubstance cells, the expression of COL1A1 gene was equally detected in both tissues and cultured cells. COL3A1 gene expression was maintained in cultured midsubstance cells. These results indicated that the phenotypes of both ACL cells were changed by cultured conditions, especially in the interface cells. After mechanical stretch, the COL1A1 expression of midsubstance and interface cells were stimulated up to 6 and 14-fold levels of each non-stretched control, respectively. The COL3A1 expressions were also enhanced up to 1.8-fold level of controls by stretching treatment in both cells. Integrin alphaVbeta3 was shifted to the peripheral edge of cells by stretching treatment. In addition, mechanical stretch changed the integrin alphaVbeta3-dependent stress fiber formation in both ACL cells. The functional blocking of integrin alphaVbeta3 inhibited stretch-activated COL1A1 and COL3A1 expressions. However, the functional blocking of integrin alpha5 did not suppress the stretch-induced COL1A1 and COL3A1 expressions in both ACL cells.

Cultured interface cells loose their phenotypes in collagen gene expressions.

However, mechanical stretch reproduces the expression of COL1A1 and COL3A1 genes in cultured ACL cells. The present study demonstrated that stretch-activated collagen gene expressions depend on the integrin alphaVbeta3-mediated cellular adhesions.