header advert
Results 1 - 5 of 5
Results per page:
Bone & Joint Research
Vol. 13, Issue 7 | Pages 321 - 331
3 Jul 2024
Naito T Yamanaka Y Tokuda K Sato N Tajima T Tsukamoto M Suzuki H Kawasaki M Nakamura E Sakai A

Aims

The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice.

Methods

Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 45 - 45
1 Jan 2016
Miyasaka T Kurosaka D Saito M Suzuki H Omori T Marumo K
Full Access

Background

Accuracy of implantation is a recognized prognostic factor for the long-term survival of TKA. The purpose of this study was to analyze the accuracy of component orientation and post-operative alignment of the leg following CT-based navigation-assisted TKA and to compare these parameters with those of a conventional surgical technique.

Methods

We retrospectively compared the alignment of 130 total knee arthroplasties performed with a CT-based navigation system with that of 130 arthroplasties done with a conventional alignment guide system. The knee joints were evaluated using full-length weight-bearing antero-posterior and lateral radiographs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 104 - 104
1 Jan 2016
Omori T Marumo K Saito M Suzuki H Kurosaka D Ozawa M Ikeda R Miyasaka T
Full Access

In total knee arthroplasty (TKA), rotational alignment of the femoral component is determined by the measured resection technique, in which anatomical landmarks serve as determinants, or by the gap balancing technique, in which the femoral component is positioned relative to the resected aspect of the tibia. The latter technique is considered logically more favorable for obtaining rectangular extension and flexion gaps. However, in patients with severe changes attributed to osteoarthritis and/or a severely limited range of motion, it is difficult to perform adequate posterior clearance (e.g. bone spur excision) before resecting the posterior femoral condyle, often causing unbalanced extension and flexion gaps after resection. Thus, the gap balancing technique is more technically demanding and requires higher skill. We employed a computed tomography (CT)-based navigation system to develop a simple and standardized surgical technique by performing two assessments: Assessment 1, we investigated the relationship between the position of the femoral component determined by the gap balancing technique and anatomical landmarks; and Assessment 2, we placed the femoral component at the position determined by the measured resection technique and within the acceptable gap-balanced range determined in Assessment 1. In Assessment 1, 18 knees with osteoarthritis were treated by posterior stabilized TKA for varus deformity. The extension-flexion balance after resection of the distal femoral condyle and the proximal tibia was within 3° in all cases. Posterior bone resection was performed parallel to the resected aspect of the tibia and at 90° of flexion under constant compression applied using a tensor. In other words, the rotational alignment of the femoral component was determined by the gap balancing technique, and its position relative to the posterior condylar axis (PCA) and clinical transepicondylar axis (CEA), which are landmarks in the measured resection technique, and the condylar twist angle (CTA; the angle between the CEA and PCA) were measured, and their relationships were quantitatively determined. The CTA, which was determined based on the preoperative CT data, was 4.7– 9.6° (mean, 7.05 ± 1.35°), while the aspect of the femoral resection was 3.0–8.3° externally rotated (mean, 5.6 ± 1.6°) to the PCA; a strong positive correlation was found between the rotational alignment of the femoral component and the CTA (p < 0.0001, R2 = 0.871). The aspect of the femoral resection was 0.3–2.6° internally rotated (mean, 1.4 ± 0.6°) to the CEA, and no correlation with the CTA was apparent. In Assessment 2, 39 knees with an extension-flexion balance ≤3° were examined to determine the internal-external rotation balance. Based on the results of Assessment 1, we employed the measured resection technique and placed the femoral component by rotationally aligning the target, which was 1.4° internally rotated to the CEA. The final rotational alignment of the femoral component was 2.0 ± 0.6° internally rotated to the CEA; the internal-external rotation balance at 90° of flexion was good and more toward external rotation by 0.72 ± 1.61°. The results demonstrated that the measured resection technique enables placement of the femoral component within an acceptable range of rotational alignment.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 168 - 168
1 May 2011
Kuroyanagi G Takada N Yamada K Suzuki H Hasuo T Nishino M
Full Access

Background: A classification of intra-articular fractures of the distal radius is described on the basis of observations of consistent patterns of fracture fragmentation and displacement. The Melone intra-articular classification system categorizes articular fractures into 4 types, with the medial complex assuming a pivotal position as the cornerstone of both the radiocarpal and distal radio-ulnar joints. The purpose of this study was to classify AO type-C3 fractures according to the Melone classification system using preoperative CT scan data.

Methods: We retrospectively reviewed the clinical records of all patients who underwent open reduction and internal fixation (ORIF), according to the AO type-C3 classification. Between September, 2006, and May, 2009, 36 patients and a total of 38 fractures were identified. These intra-articular fractures were also classified according to the Melone classification system using preoperative CT scan data. We also investigated a bone fracture type and surgicalprocedures.

Results: Nine fractures were divided into Melone type-1, 17 into type-2 (anterior displacement), 6 into type-2 (posterior displacement), 2 into type-3, and 4 into type-4. Thirty fractures were treated using plate fixation, and 8 fractures were treated using nail fixation. Melone type-1 fractures were usually treated with nail fixation, whereas type-2, -3, and -4 fractures were usually treated using plate fixation.

Conclusions: Classification according to the Melone classification system using preoperative CT scan data enables the identification and elucidation of displacement in the major fracture components and enables the establishment of rational guidelines for the management of ORIF.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 760 - 766
1 Jul 2001
Suzuki H Takahashi K Yamagata M Shimizu S Moriya H Yamazaki M

We have examined the process of fusion of the intertransverse processes and bone graft in the rabbit by in situ hybridisation and evaluated the spatial and temporal expression of genes encoding pro-α1 (I) collagen (COL1A1), pro-α1 (II) collagen (COL2A1) and pro-α1 (X) collagen (COL10A1).

Beginning at two weeks after operation, osteogenesis and chondrogenesis occurred around the transverse process and the grafted bone at the central portion of the area of the fusion mass. Osteoblasts and osteocytes at the newly-formed woven bone expressed COL1A1. At the cartilage, most chondrocytes expressed COL2A1 and some hypertrophic chondrocytes COL10A1. In some regions, co-expression of COL1A1 and COL2A1 was observed. At four weeks, such expressions for COL1A1, COL2A1 and COL10A1 became prominent at the area of the fusion mass. From four to six weeks, bone remodelling progressed from the area of the transverse processes towards the central zone. Osteoblasts lining the trabeculae expressed a strong signal for COL1A1. At the central portion of the area of the fusion mass, endochondral ossification progressed and chondrocytes expressed COL2A1 and COL10A1.

Our findings show that the fusion process begins with the synthesis of collagens around the transverse processes and around the grafted bone independently. Various spatial and temporal osteogenic and chondrogenic responses, including intramembranous, endochondral and transchondroid bone formation, progress after bone grafting at the intertransverse processes. Bone formation through cartilage may play an important role in posterolateral spinal fusion.