header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 58 - 58
1 Apr 2019
Dharia M Armacost J Son Y
Full Access

INTRODUCTION

Porous metal bone fillers are frequently used to manage bony defects encountered in revision total knee arthroplasty (rTKA). Compared to structural graft, porous metal bone fillers have shown significantly lower loosening and failure rates potentially due to osseointegration and increased material strength [1]. The strength of porous metal bone fillers used in lower extremities is frequently assessed using compression/shear/torsion test methods, adapted from spine standards. However, these basic methods may lack clinical relevance, and do not provide any insight on the relationship between patient activity and anticipated prosthesis performance. The goal of this study was to evaluate the response of bone fillers under different activities of daily living, in order to define physiologically relevant worst case biomechanics for component evaluation.

METHODS

A bone filler tibial augment is shown in Figure 1. A test construct for tibial augments (half-block each for medial and lateral sides) is shown in Figure 2, along with compatible rTKA components. An additional void in the bone was filled using bone cement. Loading was applied through the tibiofemoral contact patches created on polyethylene tibial insert. Loading was used for two activities of daily living; walking and deep knee bend [2–3]. During walking, the tibiofemoral contact patch on the anterior tibial post gets loaded due to femoral hyperextension with 1.2xbody weight (BW), whereas the medial and lateral condyles get loaded with 3xBW compressive load. For deep knee bend, only the condyles get loaded with 4.34xBW. Compared to walking, 45% higher compressive load magnitude in deep knee bend located further posterior was anticipated to create a larger bending moment and induce higher stress on the half augments. A finite element analysis (FEA) was performed by modeling this test construct with a medium size tibial augment. All components were modeled using linear elastic material properties. All interfaces, including the augment-bone interface (representing full bony ingrowth construct) were modeled using bonded contact. The inferior surface of the bone analogue was constrained. Linear static analyses were performed and peak von mises stress predicted in the tibial augments was compared between activities.