header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 73 - 73
1 Mar 2021
Taylan O Slane J Dandois F Beek N Claes S Scheys L
Full Access

The anterolateral ligament (ALL) has been recently recognized as a distinct stabilizer for internal rotation in the ACL-deficient knee and it has been hypothesized that ALL reconstruction may play an important role in improving anterolateral instability following ACL reconstruction. Both the gracilis tendon (GT) and a portion of the iliotibial band (ITB) have been suggested as graft materials for ALL reconstruction, however, there is an ongoing debate concerning whether GT or ITB are appropriate grafting materials. Furthermore, there is limited knowledge in how the mechanical properties of these potential grafts compare to the native ALL. Consequently, the aim of this study was to characterize the elastic (Young's modulus and failure load) and viscoelastic (dynamic and static creep) mechanical properties of the ALL and compare these results with the characteristics of the grafting materials (GT and ITB), in order to provide guidance to clinicians with respect to graft material choice.

Fourteen fresh-frozen cadaveric knees (85.2±12.2 yr) were obtained. The ALL, ITB, and the distal (GTD) and proximal gracilis tendons (GTP) (bisected at mid portion) were harvested from each donor and tested with a dynamic material testing frame. Prior to testing, the cross-sectional area of each tissue was measured using a casting method and the force required to achieve a min-max stress (1.2–12 MPa) for the testing protocol was calculated (preconditioning (20 cycles, 3–6 MPa), sinusoidal cycle (200 cycles, 1.2–12 MPa), dwell at constant load (100 s, 12 MPa), and load to failure (3%/s)). Kruskall-Wallis tests were used to compare all tissue groups (p<0.05).

The Young's modulus of both ALL (181.3±63.9 MPa) and ITB (357.6±94.4 MPa) are significantly lower than GTD (835.4±146.5 MPa) and GTP (725.6±227.1 MPa). In contrast, the failure load of ALL (124.5±40.9 N) was comparable with GTD (452.7±119.3 N) and GTP (433±133.7 N), however, significantly lower than ITB (909.6±194.7 N). Dynamic creep of the ALL (0.5±0.3 mm) and ITB (0.7±0.2 mm) were similar (p>0.05) whereas the GTD (0.26±0.06 mm) and GTP (0.28±0.1 mm) were significantly lower. Static creep progression of the ALL (1.09±0.4 %) was highest across all tissues, while GTD (0.24±0.05 %) and GTP (0.25±0.0.04 %) were lowest and comparable with ITB (0.3±0.07 %) creep progression.

Since grafts from the ITB, GTD and GTP were comparable to the ALL only for certain mechanical properties, there was no clear preference for using one over another for ALL reconstruction. Therefore, further studies should be performed in order to evaluate which parameters play a vital role to determine the optimum grafting choice.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 68 - 68
1 Dec 2020
Taylan O Slane J Ghijselings I Delport HP Scheys L
Full Access

Poor soft tissue balance in total knee arthroplasty (TKA) is one of the most primary causes of dissatisfaction and reduced joint longevity, which are associated with postoperative instability and early implant failure1. Therefore, surgical techniques, including mechanical instruments and 3-D guided navigation systems, in TKA aim to achieve optimum soft tissue balancing in the knee to improve postoperative outcome2. Patella-in-Place balancing (PIPB) is a novel technique which aims to restore native collateral ligament behaviour by preserving the original state without any release. Moreover, reduction of the joint laxity compensates for the loss of the visco-elastic properties of the cartilage and meniscus. Following its clinical success, we aimed to evaluate the impact of the PIPB technique on collateral ligament strain and laxity behaviour, with the hypothesis that PIPB would restore strains in the collateral ligaments3.

Eight fresh-frozen cadaveric legs were obtained (KU Leuven, Belgium, H019 2015-11-04) and CT images were acquired while rigid marker frames were affixed into the femur, and tibia for testing. After carefully removing the soft tissues around the knee joint, while preserving the joint capsule, ligaments, and tendons, digital extensometers (MTS, Minnesota, USA) were attached along the length of the superficial medial collateral ligament (MCL) and lateral collateral ligament (LCL). A handheld digital dynamometer (Mark-10, Copiague, USA) was used to apply an abduction or adduction moment of 10 Nm at fixed knee flexion angles of 0°, 30°, 60° and 90°. A motion capture system (Vicon Motion Systems, UK) was used to record the trajectories of the rigid marker frames while synchronized strain data was collected for MCL/LCL. All motion protocols were applied following TKA was performed using PIPB with a cruciate retaining implant (Stryker Triathlon, MI, USA). Furthermore, tibiofemoral kinematics were calculated4 and combined with the strain data. Postoperative tibial varus/valgus stresses and collateral ligament strains were compared to the native condition using the Wilcoxon Signed-Rank Test (p<0.05).

Postoperative tibial valgus laxity was lower than the native condition for all flexion angles. Moreover, tibial valgus of TKA was significantly different than the native condition, except for 0° (p=0.32). Although, tibial varus laxity of TKA was lower than the native at all angles, significant difference was only found at 0° (p=0.03) and 90° (p=0.02). No significant differences were observed in postoperative collateral ligament strains, as compared to the native condition, for all flexion angles, except for MCL strain at 30° (p=0.02) and 60° (p=0.01).

Results from this experimental study supported our hypotheses, barring MCL strain in mid-flexion, which might be associated with the implant design. Restored collateral ligament strains with reduced joint laxity, demonstrated by the PIPB technique in TKA in vitro, could potentially restore natural joint kinematics, thereby improving patient outcomes.

In conclusion, to further prove the success of PIPB, further biomechanical studies are required to evaluate the success rate of PIPB technique in different implant designs.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 54 - 54
1 Jan 2017
Slane J Heyse T Dirckx M Dworschak P Peersman G Scheys L
Full Access

Despite high success rates following total knee arthroplasty (TKA), knee kinematics are altered following TKA. Additionally, many patients report that their reconstructed knee does not feel ‘normal’ [1], potentially due to the absence of the anterior cruciate ligament (ACL), an important knee stabilizer and proprioceptive mechanism. ACL-retaining implants have been introduced with the aim of replicating native knee kinematics, however, there has yet to be a detailed comparison between knee kinematics in the native knee and one reconstructed with an ACL-retaining implant.

Six fresh-frozen right legs (77±10 yr, 5 male) were mounted in a kinematic rig and subjected to squatting (40°-105°) motions. The vertical positon of the hip was manipulated with a linear actuator to induce knee flexion while the quadriceps were loaded with an actuator to maintain a vertical load of 90 N at the ankle [2]. Medial/lateral hamstring forces were applied with 50 N load springs. During testing, an infrared camera system recorded the trajectories of spherical markers rigidly attached to the femur and tibia. Two trials were performed per specimen. Following testing on the native knee, specimens were implanted with an ACL-retaining TKA (Vanguard XP, Zimmer Biomet) and all trials were repeated. Three inlay thicknesses were tested to simulate optimal balancing as well as over- (1 mm thicker) and understuffing (1 mm thinner) relative to the optimal thickness.

Pre-operative computed tomography scans allowed identification of bony landmarks and marker orientation, which were used define anatomically relevant coordinate systems. The recorded marker trajectories were transformed to anatomical translations/rotations and resampled at increments of 1° of knee flexion. Translations of the medial and lateral femoral condyle centers were scaled to maximum anterior-posterior (AP) width of the medial and lateral tibial plateau, respectively. For all kinematics, statistical analysis between knee conditions was conducted using repeated measures ANOVA in increments of 10° knee flexion.

Internal rotation of the tibia was significantly lower (p<0.05) for the three reconstructed conditions relative to the native knee at flexion angles of 60° and below. No significant differences in tibial rotation were observed between the balanced, overstuffed, or understuffed conditions. The varus orientation was not significantly influenced by implantation, regardless of inlay thickness, for all flexion angles. At 40° flexion, the AP position of the femoral medial condyle was significantly more anterior for the native knee relative to the balanced and understuffed conditions. This finding was not significant for the other flexion angles. No significant differences were found for the lateral condyle center AP position at any flexion angle.

Preservation of the cruciate ligaments during total knee arthroplasty may allow better physiologic representation of knee kinematics. The implants tested in this study were able to replicate kinematics of the native knee, except for tibial rotation and AP position of the medial femoral condyle in early knee flexion. Interestingly, the impact of inlay thickness was generally small, suggesting some tolerance in the choice of inlay thickness.