header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 23 - 23
1 Apr 2018
Geurts J Müller M Pagenstert G Netzer C Schären S
Full Access

Introduction

Elevated remodelling of subchondral bone and marrow tissues has been firmly established as diagnostic and prognostic radiological imaging marker for human osteoarthritis. While these tissues are considered as promising targets for disease-modifying OA drugs, the development of novel treatment approaches is complicated by the lack of knowledge whether similar tissue changes occur in rodent OA models and poor understanding of joint-specific molecular and cellular pathomechanisms in human OA. Here, we describe the establishment of a human OA explant model to address this crucial niche in translational preclinical OA research.

Methods

Osteochondral (knee, spine) and bone (iliac crest) clinical specimens were acquired from patients undergoing total knee arthroplasty (n=4) or lumbar spine fusion using bone autografts (n=6). Fresh specimens were immediately cut in equal-sized samples (50–500 mg wet weight) and cultured in 8 mL osteogenic medium for one week. Samples were either left untreated (control) or stimulated with lipopolysaccharide (LPS, 100 ng/mL) in the absence and presence of transforming growth factor-beta inhibitor (SB-505124, 10 μm). Pro-collagen-I (Col-I), interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1) secretion was determined in conditioned medium by ELISA. Tissue viability was assessed using MTT and alkaline phosphatase (ALP) activity staining.