header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 6 - 6
1 Oct 2019
Nessler JM Malkani AJ Sachdeva S Nessler JP Westrich GH Harwin SF Mayman DJ Jerabek SA
Full Access

Introduction

Patients undergoing primary total hip arthroplasty (THA) with prior lumbar spine fusion (LSF) are at high risk for instability with reported incidence of dislocation as high as 8.3%. The use of dual mobility cups in patients undergoing revision THA, another high risk group, has demonstrated decreased incidence of instability. Purpose of this study was to evaluate the risk of instability in patients undergoing primary THA with a history of prior LSF using dual mobility cups.

Methods

This was a multi-center retrospective study with 93 patients undergoing primary THA using a dual mobility cup with prior history of instrumented LSF. The primary outcome investigated was instability. Secondary variables investigated included number of levels fused, approach, length of stay, and other complications. The minimum follow-up time was 1 year since the majority of dislocations occur during first year following the primary THA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 280 - 280
1 Mar 2013
Nevelos J Boucher F Parvizi J Nessler JP Kolisek FR
Full Access

A novel cementless tapered wedge femoral hip implant has been designed at a reduced length and with a geometry optimized to better fit a wide array of bone types (Accolade II, Stryker, Mahwah, USA). In this study, finite element analysis (FEA) is used to compare the initial stability of the new proposed hip stem to predicate tapered wedge stem designs. A fit analysis was also conducted. The novel stem was compared to a predicate standard tapered stem and a shortened version of that same predicate stem.

Methods

The novel shortened tapered wedge stem geometry was designed based on a morphological study of 556 CT scans. We then selected 10 discrete femoral geometries of interest from the CT database, including champagne fluted and stove pipe femurs. The novel and the predicate stems were virtually implanted in the bones in ABAQUS CAE. A total of thirty FEA models were meshed with 4 nodes linear tetrahedral elements. Bone/implant interface properties was simulated with contact surface and a friction coefficient of 0.35. Initial stability of each stem/bone assembly was calculated using stair-climbing loading conditions. The overall initial stability of the HA coated surface was evaluated by comparing the mean rotational, vertical, gap-opening and total micromotion at the proximal bone/implant interface of the novel and predicate stem designs.

To characterize the fit of the stem designs we analyzed the ratio of a distal (60 mm below lesser trochanter) and a proximal (10 mm above lesser trochanter) cross section. A constant implantation height of 20 mm above the lesser trochanter was used. The fit of the stems was classified as Type 1 (proximal and distal engagement), Type 2 (proximal engagement only) and Type 3 (distal engagement only).

Results

The mean % micromotion of the HA coated surface greater than 50 mm was lowest at 40.2% (SD 11.5%) for the novel tapered wedge stem compared to the clinically successful predicate stem design (Accolade TMAZ, Stryker, Mahwah, USA) at 44.9% (SD 13.2%) and its shortened version at 48.5% (SD 9.0%) as shown in Figure 1. Improved initial stability of the new stem was also confirmed for rotational, vertical and gap-opening micromotion. However, there was no statistically significant difference.

The novel tapered stem design showed a well balanced proximal to distal ratio throughout the complete size range. The novel tapered stem design showed a reduced percentage of distal engagements (2.8%) compared to the predicate standard stem (17.2%). In the 40 to 60 year old male group the distal engagement for the standard stem increases (28.2%), whereas the distal engagements for the novel stem remains unchanged (1.3%).