header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 26 - 26
2 Jan 2024
Jacob A Heumann M Zderic I Varga P Caspar J Lauterborn S Haschtmann D Fekete T Gueorguiev B Loibl M
Full Access

Stand-alone anterior lumbar interbody fusion (ALIF) provides the opportunity to avoid supplemental posterior fixation. This may reduce morbidity and complication rate, which is of special interest in patients with reduced bone mineral density (BMD). This study aims to assess immediate biomechanical stability and radiographic outcome of a stand-alone ALIF device with integrated screws in specimens of low BMD.

Eight human cadaveric spines (L4-sacrum) were instrumented with SynFix-LR™ (DePuy Synthes) at L5/S1. Quantitative computed tomography was used to measure BMD of L5 in AMIRA. Threshold values proposed by the American Society of Radiology 80 and 120 mg CaHa/mL were used to differentiate between Osteoporosis, Osteopenia, and normal BMD. Segmental lordosis, anterior and posterior disc height were analysed on pre- and postoperative radiographs (Fig 1). Specimens were tested intact and following instrumentation using a flexibility protocol consisting of three loading cycles to ±7.5 Nm in flexion-extension, lateral bending, and axial rotation. The ranges of motion (ROM) of the index level were assessed using an optoelectronic system.

BMD ranged 58–181mg CaHA/mL. Comparison of pre- and postoperative radiographs revealed significant increase of L5/S1 segmental lordosis (mean 14.6°, SD 5.1, p < 0.001) and anterior disc height (mean 5.8mm, SD 1.8, p < 0.001), but not posterior disc height. ROM of 6 specimens was reduced compared to the intact state. Two specimens showed destructive failure in extension. Mean decrease was most distinct in axial rotation up to 83% followed by flexion-extension.

ALIF device with integrated screws at L5/S1 significantly increases segmental lordosis and anterior disc height without correlation to BMD. Primary stability in the immediate postoperative situation is mostly warranted in axial rotation. The risk of failure might be increased in extension for some patients with reduced lumbar BMD, therefore additional posterior stabilization could be considered.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 26 - 26
1 Dec 2021
Lang S Loibl M Gläsner J Simon M Rupp M Grad S Neumann C Alt V Gessner A Hanses F
Full Access

Aim

Vertebral osteomyelitis (VO) is an infection of the spine mostly caused by bacterial pathogens. The pathogenesis leading to destruction of intervertebral discs (IVD) and adjacent vertebral bodies (VB) is poorly described. We aimed to investigate the connection between infection, bone- and disc-metabolism in VO patients.

Method

Fourteen patients with VO (infection group) and 14 patients with incomplete burst fractures of the spine (fracture group as controls) were included prospectively. Demographic data, treatment details, laboratory infection markers, and patient-reported outcome were assessed. Tissue biopsies from affected IVDs and adjacent VBs were analyzed for mRNA-expression levels of 18 target genes including chemokines, adipokines and genes involved in bone-metabolism by RT-qPCR.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 51 - 51
1 Dec 2021
Lang S Frömming A Ehrenschwender M Neumann C Walter N Loibl M Alt V Rupp M
Full Access

Aim

Empiric antibiotic therapy for suspected pyogenic spondylodiscitis (SD) should be initiated immediately with severely ill patients and may also be necessary for culture-negative SD. The aim of this study was to infer an appropriate empiric antibiotic regimen by analyzing the antimicrobial susceptibility of isolated pathogens from microbiologically proven pyogenic spondylodiscitis.

Method

We performed a retrospective review of adult patients with clinically proven SD treated at our level 1 trauma center between 2013 and 2020. Demographic data, radiologic findings, and treatment modalities were evaluated. The appropriateness of empiric antibiotic regimens was assessed based on the antibiograms of the isolated pathogens. Anamneses were used to distinguish between community-acquired (CA) and healthcare-associated (HA) pathogens, which included cases that had a hospital stay or invasive intervention in the past 6 months.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 28 - 28
1 Oct 2019
Mannion A Mariaux F Porchet F Fekete T Jeszenszky D Haschtmann D Kleinstuck F Loibl M Elfering A
Full Access

Background

Depression, anxiety, catastrophising, and fear-avoidance beliefs are some of the so-called “yellow flags” that predict a poor outcome in back patients. Many surgeons have difficulty assessing yellow flags, perhaps due to the complexity of existing instruments and time constraints during consultations. We developed a brief tool to allow the systematic evaluation of core flags.

Methods

Data from 4 questionnaires (ZUNG depression (N=399); Hospital Anxiety and Depression Scale (Anxiety-subscale) (N=308); Pain Catastrophising (N=766); Fear Avoidance Beliefs (N=736)) were analysed to identify the respective single item that best represented the full scale score. The 4 items formed the “Core Yellow Flags Index” (CYFI). 1'768 patients completed CYFI and a Core Outcome Measures Index (COMI) preoperatively, and COMI 3 and 12mo later (FU).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 87 - 87
1 Jan 2017
Zahn J Herrmann M Loibl M Alini M Verrier S
Full Access

Angiogenesis is a key factor in early stages of wound healing and is crucial for tissue regeneration. Gold standard for large bone defect treatment is the transplantation of autologous bone grafts, but is not entirely satisfying (e.g. limited amount). Cell therapies and tissue engineering approaches may overcome these problems by using cells and autologous blood components obtainable by less invasive procedures. Pre-clinical studies previously showed promising results combining endothelial progenitor cells (EPCs) and mesenchymal stem cell (MSCs) in polyurethane scaffolds in presence of PRP (1). A systemic investigation of the chemical and mechanical characteristics of different PRP gels formulations suggested their potential use as sustained autologous growth factor delivery system (2). Here we investigate PRP hydrogels as autologous injectable cell delivery systems for EPCs and MSCs and their efficacy in promoting fast neo-vascularization for bone repair applications.

PRP hydrogel and corresponding platelet lysate (PL) were produced from platelet concentrates as described before (3). MSCs were isolated by Ficoll-Paque centrifugation from human bone marrow (EK_regensburg12-101-0127), and cultured in alpha MEM containing 10% FCS and 5 ng/mL basic-FGF (GIBCO). EPCs (CD133+/CD34+) were isolated from MSC fractions using magnetic-activated cell sorting (MACS®) and further cultured in IMDM (GIBCO) containing 5% FCS and 5% PL. GFP positive HUVECs are from Angio-Proteomie, (Boston, USA). Prior to gel encapsulation, MSC and EPCs were pre-stained using PKH26-red® and PKH67-green® respectively. Cells in different proportions were encapsulated in 3D PRP gels, in FDA approved Fibrin gels and in Matrigel®. The gels were cultured in Ibidi microwells placed in an onstage incubator linked to an EVOS Auto Cell Imaging System. The cellular network formation capacity of HUVEC or EPCs and MSC in different proportions was analyzed for the 3 types of hydrogels using time lapse movies recorded over a period of 14 days. Parallel cultures were performed in a classical cell culture CO2 incubator and sample gels were taken at different time points for additional immunostaining and gene expression analysis.

Preliminary results indicate high cell viability in all of the three tested gels. PRP hydrogels present a favorable environment for the formation of a 3 dimensional cellular network in cell co-culture. The formation of these networks was apparent as early as 4 days after seeding. Networks increase in complexity and branching over time. The same was observed when cells were embedded in Matrigel®, which is known for its pro-angiogenic properties. Further experiments are currently in process looking at the involvement of MSCs in this process and the effect of PRP 3D co-culture on their differentiation.

PRP was previously shown as a potent growth factor delivery system for tissue engineering. In the present work, the high cell viability together with the 3 dimensional capillary-like networks observed at early time points suggest that PRP can also be used as an autologous cell delivery and pro-angiogenic system for bone tissue repair.