header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 50 - 50
1 Mar 2021
Okazaki Y Furumatsu T Hiranaka T Kamatsuki Y Ozaki T
Full Access

The meniscus is a fibrocartilaginous tissue that plays an important role in controlling the complex biomechanics of the knee. Many histological and mechanical studies about meniscal attachment have been carried out, and medial meniscus (MM) root repair is recommended to prevent subsequent cartilage degeneration following MM posterior root tear. However, there are only few studies about the differences between meniscus root and horn cells. The goal of this study was to clarify the differences between these two cells.

Tissue samples were obtained from the medial knee compartments of 10 patients with osteoarthritis who underwent total knee arthroplasty. Morphology, distribution, and proliferation of MM root and horn cells, as well as gene and protein expression levels of Sry-type HMG box (SOX) 9 and type II collagen (COL2A1) were determined after cyclic tensile strain (CTS) treatment.

Horn cells had a triangular morphology, whereas root cells were fibroblast-like. The number of horn cells positive for SOX9 and COL2A1 was considerably higher than that of root cells. Although root and horn cells showed similar levels of proliferation after 48, 72, or 96 h of culture, more horn cells than root cells were lost following 2-h CTS (5% and 10% strain). SOX9 and COL2A1 mRNA expression levels were significantly enhanced in horn cells compared with those in root cells after 2- and 4-h CTS (5%) treatment.

This study demonstrates that MM root and horn cells have distinct characteristics and show different cellular phenotypes. Our results suggest that physiological tensile strain is important for activating extracellular matrix production in horn cells. Restoring physiological mechanical stress may be useful for promoting healing of the MM posterior horn.