header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 61 - 61
1 Dec 2022
Shah A Abbas A Lex J Hauer T Abouali J Toor J
Full Access

Knee arthroscopy with meniscectomy is the third most common Orthopaedic surgery performed after TKA and THA, comprising up to 16.6% of all procedures. The efficiency of Orthopaedic care delivery with respect to waiting times and systemic costs is extremely concerning. Canadian Orthopaedic patients experience the longest wait times of any G7 country, yet perioperative surgical care constitutes a significant portion of a hospital's budget.

In-Office Needle Arthroscopy (IONA) is an emerging technology that has been primarily studied as a diagnostic tool. Recent evidence shows that it is a cost-effective alternative to hospital- and community-based MRI with comparable accuracy. Recent procedure guides detailing IONA medial meniscectomy suggest a potential node for OR diversion. Given the high case volume of knee arthroscopy as well as the potential amenability to be diverted away from the OR to the office setting, IONA has the potential to generate considerable improvements in healthcare system efficiency with respect to throughput and cost savings. As such, the purpose of this study is to investigate the cost savings and impact on waiting times on a mid-sized Canadian community hospital if IONA is offered as an alternative to traditional operating room (OR) arthroscopy for medial meniscal tears.

In order to develop a comprehensive understanding and accurate representation of the quantifiable operations involved in the current state for medial meniscus tear care, process mapping was performed that describes the journey of a patient from when they present with knee pain to their general practitioner until case resolution. This technique was then repeated to create a second process map describing the hypothetical proposed state whereby OR diversion may be conducted utilizing IONA. Once the respective process maps for each state were determined, each process map was translated into a Dupont decision tree. In order to accurately determine the total number of patients which would be eligible for this care pathway at our institution, the OR booking scheduling for arthroscopy and meniscectomy/repair over a four year time period (2016-2020) were reviewed. A sensitivity analysis was performed to examine the effect of the number of patients who select IONA over meniscectomy and the number of revision meniscectomies after IONA on 1) the profit and profit margin determined by the MCS-Dupont financial model and 2) the throughput (percentage and number) determined by the MCS-throughput model.

Based on historic data at our institution, an average of 198 patients (SD 31) underwent either a meniscectomy or repair from years 2016-2020. Revenue for both states was similar (p = .22), with the current state revenue being $ 248,555.99 (standard deviation $ 39,005.43) and proposed state of $ 249,223.86 (SD $ 39,188.73). However, the reduction in expenses was significant (p < .0001) at 5.15%, with expenses in the current state being $ 281,415.23 (SD $ 44,157.80) and proposed state of $ 266,912.68 (SD $ 42,093.19), representing $14,502.95 in savings. Accordingly, profit improvement was also significant (p < .0001) at 46.2%, with current state profit being $ (32,859.24) (SD $ 5,153.49) and proposed state being $ (17,678.82) (SD $ 2,921.28). The addition of IONA into the care pathway of the proposed state produced an average improvement in throughput of 42 patients (SD 7), representing a 21.2% reduction in the number of patients that require an OR procedure. Financial sensitivity analysis revealed that the proposed state profit was higher than the current state profit if as few as 10% of patients select IONA, with the maximum revision rate needing to remain below 40% to achieve improved profits.

The most important finding from this study is that IONA is a cost-effective alternative to traditional surgical arthroscopy for medial meniscus meniscectomy. Importantly, IONA can also be used as a diagnostic procedure. It is shown to be a cost-effective alternative to MRI with similar diagnostic accuracy. The role of IONA as a joint diagnostic-therapeutic tool could positively impact MRI waiting times and MRI/MRA costs, and further reduce indirect costs to society. Given the well-established benefit of early meniscus treatment, accelerating both diagnosis and therapy is bound to result in positive effects.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 89 - 89
1 Dec 2022
Koucheki R Lex J Morozova A Ferri D Hauer T Mirzaie S Ferguson P Ballyk B
Full Access

Novel immersive virtual reality (IVR) technologies are revolutionizing medical education. Virtual anatomy education using head-mounted displays allows users to interact with virtual anatomical objects, move within the virtual rooms, and interact with other virtual users. While IVR has been shown to be more effective than textbook learning and 3D computer models presented in 2D screens, the effectiveness of IVR compared to cadaveric models in anatomy education is currently unknown. In this study, we aim to compare the effectiveness of IVR with direct cadaveric bone models in teaching upper and lower limb anatomy for first-year medical students.

A randomized, double-blind crossover non-inferiority trial was conducted. Participants were first-year medical students from a single University. Exclusion criteria included students who undertook prior undergraduate or graduate degrees in anatomy. In the first stage of the study, students were randomized in a 1:1 ratio to IVR or cadaveric bone groups studying upper limb skeletal anatomy. All students were then crossed over and used cadaveric bone or IVR to study lower limb skeletal anatomy. All students in both groups completed a pre-and post-intervention knowledge test. The educational content was based on the University of Toronto Medical Anatomy Curriculum. The Oculus Quest 2 Headsets (Meta Technologies) and PrecisionOS Anatomy application (PrecisionOS Technology) were utilized for the virtual reality component. The primary endpoint of the study was student performance on the pre-and post-intervention knowledge tests. We hypothesized that student performance in the IVR groups would be comparable to the cadaveric bone group.

50 first-year medical students met inclusion criteria and were computer randomized (1:1 ratio) to IVR and cadaveric bone group for upper limb skeletal anatomy education. Forty-six students attended the study, 21 completed the upper limb modules, and 19 completed the lower limb modules. Among all students, average score on the pre-intervention knowledge test was 14.6% (Standard Deviation (SD)=18.2%) and 25.0% (SD=17%) for upper and lower limbs, respectively. Percentage increase in students’ scores between pre-and post-intervention knowledge test, in the upper limb for IVR, was 15 % and 16.7% for cadaveric bones (p = 0. 2861), and for the lower limb score increase was 22.6% in the IVR and 22.5% in the cadaveric bone group (p = 0.9356).

In this non-inferiority crossover randomized controlled trial, we found no significant difference between student performance in knowledge tests after using IVR or cadaveric bones. Immersive virtual reality and cadaveric bones were equally effective in skeletal anatomy education. Going forward, with advances in VR technologies and anatomy applications, we can expect to see further improvements in the effectiveness of these technologies in anatomy and surgical education. These findings have implications for medical schools having challenges in acquiring cadavers and cadaveric parts.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 9 - 9
1 Dec 2022
Koucheki R Lex J Morozova A Ferri D Hauer T Mirzaie S Ferguson P Ballyk B
Full Access

Novel immersive virtual reality (IVR) technologies are revolutionizing medical education. Virtual anatomy education using head-mounted displays allows users to interact with virtual anatomical objects, move within the virtual rooms, and interact with other virtual users. While IVR has been shown to be more effective than textbook learning and 3D computer models presented in 2D screens, the effectiveness of IVR compared to cadaveric models in anatomy education is currently unknown. In this study, we aim to compare the effectiveness of IVR with direct cadaveric bone models in teaching upper and lower limb anatomy for first-year medical students.

A randomized, double-blind crossover non-inferiority trial was conducted. Participants were first-year medical students from a single University. Exclusion criteria included students who undertook prior undergraduate or graduate degrees in anatomy. In the first stage of the study, students were randomized in a 1:1 ratio to IVR or cadaveric bone groups studying upper limb skeletal anatomy. All students were then crossed over and used cadaveric bone or IVR to study lower limb skeletal anatomy. All students in both groups completed a pre-and post-intervention knowledge test. The educational content was based on the University of Toronto Medical Anatomy Curriculum. The Oculus Quest 2 Headsets (Meta Technologies) and PrecisionOS Anatomy application (PrecisionOS Technology) were utilized for the virtual reality component. The primary endpoint of the study was student performance on the pre-and post-intervention knowledge tests. We hypothesized that student performance in the IVR groups would be comparable to the cadaveric bone group.

50 first-year medical students met inclusion criteria and were computer randomized (1:1 ratio) to IVR and cadaveric bone group for upper limb skeletal anatomy education. Forty-six students attended the study, 21 completed the upper limb modules, and 19 completed the lower limb modules. Among all students, average score on the pre-intervention knowledge test was 14.6% (Standard Deviation (SD)=18.2%) and 25.0% (SD=17%) for upper and lower limbs, respectively. Percentage increase in students’ scores between pre-and post-intervention knowledge test, in the upper limb for IVR, was 15 % and 16.7% for cadaveric bones (p = 0. 2861), and for the lower limb score increase was 22.6% in the IVR and 22.5% in the cadaveric bone group (p = 0.9356).

In this non-inferiority crossover randomized controlled trial, we found no significant difference between student performance in knowledge tests after using IVR or cadaveric bones. Immersive virtual reality and cadaveric bones were equally effective in skeletal anatomy education. Going forward, with advances in VR technologies and anatomy applications, we can expect to see further improvements in the effectiveness of these technologies in anatomy and surgical education. These findings have implications for medical schools having challenges in acquiring cadavers and cadaveric parts.