header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 102 - 102
1 Dec 2022
Gundavda M Lazarides A Burke Z Griffin A Tsoi K Ferguson P Wunder JS
Full Access

Cartilage lesions vary in the spectrum from benign enchondromas to highly malignant dedifferentiated chondrosarcomas. From the treatment perspective, enchondromas are observed, Grade 1 chondrosarcomas are curetted like aggressive benign tumors, and rest are resected like other sarcomas. Although biopsy for tissue diagnosis is the gold standard for diagnosis and grade determination in chondrosarcoma, tumor heterogeneity limits the grading in patients following a biopsy. In the absence of definite pre-treatment grading, a surgeon is therefore often in a dilemma when deciding the best treatment option. Radiology has identified aggressive features and aggressiveness scores have been used to try and grade these tumors based on the imaging characteristics but there have been very few published reports with a uniform group and large number of cases to derive a consistent scoring and correlation.

The authors asked these study questions :(1) Does Radiology Aggressiveness and its Score correlate with the grade of chondrosarcoma? (2) Can a cut off Radiology Agressiveness Score value be used to guide the clinician and add value to needle biopsy information in offering histological grade dependent management?

A retrospective analysis of patients with long bone extremity intraosseous primary chondrosarcomas were correlated with the final histology grade for the operated patients and Radiological parameters with 9 parameters identified a priori and from published literature (radiology aggressiveness scores - RAS) were evaluated and tabulated. 137 patients were identified and 2 patients were eliminated for prior surgical intervention. All patients had tissue diagnosis available and pre-treatment local radiology investigations (radiographs and/or CT scans and MRI scans) to define the RAS parameters.

Spearman correlation has indicated that there was a significant positive association between RAS and final histology grading of long bone primary intraosseous chondrosarcomas. We expect higher RAS values will provide grading information in patients with inconclusive pre-surgery biopsy to tumor grades and aid in correct grade dependant surgical management of the lesion. Prediction of dedifferentiated chondrosarcoma from higher RAS will be attempted and a correlation to obtain a RAS cut off, although this may be challenging to achieve due to the overlap of features across the intermediate grade, high grade and dedifferentiated grades.

Radiology Aggressiveness correlates with the histologic grade in long bone extremity primary chondrosarcomas and the correlation of radiology and biopsy can aid in treatment planning by guiding us towards a low-grade neoplasm which may be dealt with intralesional extended curettage or high-grade lesion which need to be resected. Standalone RAS may not solve the grading dilemma of primary long bone intraosseous chondrosarcomas as the need for tissue diagnosis for confirming atypical cartilaginous neoplasm cannot be eliminated, however in the event of a needle biopsy grade or inconclusive open biopsy it may guide us towards a correlational diagnosis along with radiology and pathology for grade based management of the chondrosarcoma.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 94 - 94
1 Dec 2022
Lazarides A Novak R Burke Z Gundavda M Ghert M Rose P Houdek M Wunder JS Ferguson P Griffin A Tsoi K
Full Access

Radiation induced sarcoma of bone is a rare but challenging disease process associated with a poor prognosis. To date, series are limited by small patient numbers; data to inform prognosis and the optimal management for these patients is needed. We hypothesized that patients with radiation-induced pelvic bone sarcomas would have worse surgical, oncologic, and functional outcomes than patients diagnosed with primary pelvic bone sarcomas

This was a multi-institution, comparative cohort analysis. A retrospective chart review was performed of all patients diagnosed with a radiation-induced pelvic and sacral bone sarcoma between January 1st, 1985 and January 1st, 2020 (defined as a histologically confirmed bone sarcoma of the pelvis in a previously irradiated field with a minimum 3-year interval between radiation and sarcoma diagnosis). We also identified a comparison group including all patients diagnosed with a primary pelvic osteosarcoma/spindle cell sarcoma of bone (i.e. eligible for osteosarcoma-type chemotherapy) during the same time interval. The primary outcome measure was disease-free and overall survival.

We identified 85 patients with primary osteosarcoma of the pelvis (POP) and 39 patients with confirmed radiation induced sarcoma of the bony pelvis (RISB) undergoing surgical resection. Patients with RISB were older than patients with POP (50.5 years vs. 36.5 years, p67.7% of patients with POP underwent limb salvage as compared to 77% of patients with RISB; the type of surgery was not different between groups (p=.0.24). There was no difference in the rate of margin positive surgery for RISB vs. POP (21.1% vs. 14.1%, p=0.16). For patients undergoing surgical resection, the rate of surgical complications was high, with more RISB patients experiencing complications (79.5%) than POP patients (64.7%); this approached statistical significance (p=0.09).

15.4% of patients with RISB died perioperative period (within 90 days of surgery) as compared to 3.5% of patients with POP (p= 0.02). For patients undergoing surgical resection, 5-year OS was significantly worse for patients with RISB vs. POP (27.3% vs. 47.7%, p=0.02). When considering only patients without metastatic disease at presentation, a significant difference in 5-year survival remains for patients with RISB vs. POP (28.6% vs. 50%, p=0.03) was a trend towards poorer 5-year DFS for patients with RISB vs. POP (30% vs. 47.5%), though this did not achieve statistical significance (p=0.09).

POP and RISB represent challenging disease processes and the oncologic outcomes are similarly poor between the two; however, the disease course for patients with RISB appears to be worse overall. While surgery can result in a favorable outcome for a small subset of patients, surgical treatment is fraught with complications.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 103 - 103
1 Dec 2022
Lazarides A Burke Z Gundavda M Griffin A Tsoi K Wunder JS Ferguson P
Full Access

Wide resection, with or without adjuvant therapy, is the mainstay of treatment for soft tissue sarcoma of the extremities. The surgical treatment of soft tissue sarcoma can portend a prolonged course of recovery from a functional perspective. However, data to inform the expected course of recovery following sarcoma surgery is lacking. The purpose of this study was to identify time to maximal functional improvement following sarcoma resection and to identify factors that delay the expected course of recovery.

A retrospective chart review was performed of all patients undergoing surgical treatment of a soft tissue sarcoma of the extremities between January 1st, 1985 and November 15, 2020 with a minimum of 1 follow up. The primary outcome measure was time to maximal functional improvement, defined as failure to demonstrate improvement on two consecutive follow up appointments, as defined by the functional outcome measures of Toronto Extremity Salvage Score (TESS) and Musculoskeletal Tumor Society (MSTS) Score or by achieving 90% of maximum outcome score.

We identified 1188 patients who underwent surgical resection of a soft tissue sarcoma of the extremities. Patients typically achieved a return to their baseline level of function by 1 year and achieved “maximal” functional recovery by 2 year's time postoperatively.

Patient and tumor factors that were associated with worse functional outcome scores and a delayed return to maximal functional improvement included older age (p=0.007), female sex (p-0.004), larger tumor size (p < 0 .001), deep tumor location (p < 0 .001), pelvic location (p < 0 .001), higher tumor grade (p < 0 .001). Treatment factors that were associated with worse functional outcome scores and a delayed return to maximal functional improvement included use of radiation therapy (p < 0 .001), perioperative complications (p < 0 .001), positive margin status (p < 0 .001) and return of disease, locally or systemically (p < 0 .001).

Most patients will recover their baseline function by 1 year and achieve “maximal” recovery by 2 years’ time following surgical resection for soft tissue sarcoma of the extremities. Several patient, tumor and treatment factors should be used to counsel patients as to a delayed course of recovery.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 97 - 97
1 Dec 2022
Burke Z Lazarides A Gundavda M Griffin A Tsoi K Ferguson P Wunder JS
Full Access

Traditional staging systems for high grade osteosarcoma (Enneking, MSTS) are based largely on gross surgical margins and were developed before the widespread use of neoadjuvant chemotherapy. It is now well known that both microscopic margins and chemotherapy are predictors of local recurrence. However, neither of these variables are used in the traditional surgical staging and the precise safe margin distance is debated. Recently, a novel staging system utilizing a 2mm margin cutoff and incorporating precent necrosis was proposed and demonstrated improved prognostic value for local recurrence free survival (LRFS) when compared to the MSTS staging system. This staging system has not been validated beyond the original patient cohort. We propose to analyze this staging system in a cohort of patients with high-grade osteosarcoma, as well as evaluate the ability of additional variables to predict the risk of local recurrence and overall survival.

A retrospective review of a prospectively collected database of all sarcoma patients between 1985 and 2020 at a tertiary sarcoma care center was performed. All patients with high-grade osteosarcoma receiving neo-adjuvant chemotherapy and with no evidence of metastatic disease on presentation were isolated and analyzed. A minimum of two year follow up was used for surviving patients. A total of 225 patients were identified meeting these criteria. Univariate analysis was performed to evaluate variable that were associated with LRFS. Multivariate analysis is used to further analyze factors associated with LRFS on univariate analysis.

There were 20 patients (8.9%) who had locally recurrent disease. Five-year LRFS was significantly different for patients with surgical margins 2mm or less (77.6% v. 93.3%; p=0.006) and those with a central tumor location (67.9 v. 94.4; <0.001). A four-tiered staging system using 2mm surgical margins and a percent necrosis of 90% of greater was also a significant predictor of 5-year LRFS (p=0.019) in this cohort. Notably, percent necrosis in isolation was not a predictor of LRFS in this cohort (p=0.875). Tumor size, gender, and type of surgery (amputation v. limb salvage) were also analyzed and not associated with LRFS. The MSTS surgical margin staging system did not significantly stratify groups (0.066).

A 2mm surgical margin cutoff was predictive of 5-year LRFS in this cohort of patients with localized high-grade osteosarcoma and a combination of a 2mm margin and percent necrosis outperformed the prognostic value of the traditional MSTS staging system. Utilization of this system may improve the ability of surgeons to stage thier patients. Additional variables may increase the value of this system and further validation is required.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 27 - 27
1 Dec 2015
Menon A Agashe V Gundavda M Patil H Soman R Rodrigues C Deshpande R
Full Access

Non-tuberculous mycobacteria (NTM)—previously considered as saprophytic organisms—are now increasingly recognized as human pathogens [1, 2]. Although humans are routinely exposed to NTM, clinical infection rates are low; further, these infections typically occur in immunocompromised patients. However, an increasing incidence of NTM infections in immunocompetent hosts—caused by direct inoculation, such as contamination from surgical procedures or penetrating trauma—has been noted [1]. Clinically and histopathologically, musculoskeletal infections caused by NTM resemble those caused by Mycobacteria tuberculosis; however, they are largely resistant to routine anti-tuberculosis agents [3,4]. Therefore, NTM infections can either be missed or even regarded as drug resistant tuberculosis, causing a significant delay in diagnosis. Here, we present the features and outcomes of 6 immunocompetent patients with musculoskeletal infections caused by NTM.

We retrospectively analyzed the outcomes of musculoskeletal infections caused by NTM in 6 healthy, immunocompetent hosts admitted between 2004 and 2015. The etiology was traced, and available culture reports were reviewed.

NTM inoculation was traced to open fractures in 2 patients (1, patella; 1, humerus), intra-articular injection in 2 patients (1, hip; 1, shoulder), local steroid injection to the calcaneum in 1 patient, and an arthroscopic procedure in the knee joint in 1 patient. Histopathological analyses revealed chronic granulomatous inflammation, with positive NTM cultures. Following radical debridement and targeted antibiotic therapy for NTM, all 6 patients showed complete resolution over a follow-up period of 8 months to 10 years, with no recurrence.

NTM are an uncommon pathogen in immunocompetent patients. In patients with chronic granulomatous infection not responding to standard anti-tuberculous treatment and with a history suggestive of inoculation—namely open fractures, surgical intervention, or injection—the possibility of NTM infection should be considered. Appropriate antibiotic therapy based on drug susceptibility reports gives good outcomes. While the hallmark of M. tuberculosis infections is chronic granulomatous inflammation, not every case of mycobacterial granulomatous inflammation is due to M. tuberculosis.