header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 70 - 71
1 Mar 2010
Holstein J Fiedler M Becker S Matthys R Garcia P Histing T Menger M Pohlemann T
Full Access

During the last decades numerous studies have reported the critical impact of physical activity on bone repair. While most studies have evaluated the tissue response to the local mechanical environment within the fracture gap, there is a lack of information on the systemic role of physical activity during fracture healing. Therefore, the aim of this study was to standardize the mechanical environment in the fracture gap by developing a rotationally and axially stable murine fracture model, and thereby to analyze the systemic influence of physical activity on early bone repair.

After stable fixation of a closed femoral fracture, mice (n=18) were housed in cages supplied with running wheels (running distance > 500m/d). At 2 weeks animals were sacrificed and bones were prepared for histomorphometric (n=7), biomechanical (n=7), and protein biochemical analyses (n=4). Additional mice (n=22), which were housed in standard cages, served as controls.

Histomorphometric evaluation showed no influence of increased physical activity on bone repair in terms of callus size and tissue composition. Accordingly, also biomechanical testing of the callus revealed no differences between both groups in rotational stiffness, peak rotation angle, and load at failure. Western blot analyses demonstrated no alterations in callus expression of proliferating cell nuclear antigen (PCNA) and vascular endothelial growth factor (VEGF) after daily running when compared to controls.

We conclude that increased physical activity under standardized mechanical conditions in the fracture gap does not affect early bone repair in mice.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 132 - 132
1 Mar 2009
Lohmann C Laupichler D Junk-Jantsch S Fiedler M Pflüger G
Full Access

Introduction: Metal/metal total hip arthroplasties (THA) with improved qualities of the alloys and encouraging midterm clinical results are widely used. Hyperergic reactions have been observed in revision tissues in a series of failures. This study examined synovial fluids of patients with aseptic loosening of THA from metal/metal and ceramic/polyethylene endoprostheses or arthritis of the hip by analysis of various released cytokines.

Materials and Methods: The aspirations of synovial fluids from 11 patients with arthritis of the hip, 6 THA revisions with ceramic polyethylene articulations, and 22 metal/metal articulations were retrieved. 15 of the 22 cases showed lymphocytic infiltration in the histologies.

The aspirates were examined with a commercially available assay using a Multiplex Reader. The interleukins Il-1 beta, -2, -5, -6, -10, -12, -13, -15,-17 and IL-1 receptor antagonist (Il-1ra) were measured. Further G-CSF, GM-CSF, IFN gamma, MIP 1 beta, MIP alpha, MCP 1, and TNF alpha were assayed.

Results: Samples from patients with aseptic loosenings showed increased Il-10 and MCP compared to osteoarthritis. TNF alpha, MIP alpha, and Il-1β were increased in metal/metal THA. Il-5, Il-12, Il-13 and Il-17 were only increased in patients with lymphocytic reactions, but not in ceramic/polyethylene articulations. GM-CSF, G-CSF, IFN gamma, Il-1ra Il-2, and Il-6 were only elevated in THA with lymphocytic reactions compared to metal/metal cases without.

Diskussion: Aspirates from aseptic loosened THA are important diagnostic tools. The data showed a distinctly different cytokine profile joint fluids in aseptic loosenings of metal/metal THA vs. ceramic-UHMWPE articulations and fluids from osteoarthritis patients. The data may contribute to establish a cytokine profile to determine failures due to lymphocytic infiltrations before revision of metal/metal articulations.