header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_7 | Pages 3 - 3
1 May 2021
Chen P Ng N Snowden G Mackenzie SP Nicholson JA Amin AK
Full Access

Open reduction and internal fixation (ORIF) with trans-articular screws or dorsal plating is the standard surgical technique for displaced Lisfranc injuries. This aim of this study is to compare the clinical outcomes of percutaneous reduction and internal fixation (PRIF) of low energy Lisfranc injuries with a matched, control group of patients treated with ORIF.

Over a seven-year period (2012–2019), 16 consecutive patients with a low energy Myerson B2-type injury were treated with PRIF. Patient demographics were recorded within a prospectively maintained database at the institution. This study sample was matched for age, sex and mechanism of injury to a control group of 16 patients with similar Myerson B2-type injuries treated with ORIF. Clinical outcome was compared using the American Orthopaedic Foot and Ankle Society (AOFAS) midfoot score and Manchester Oxford Foot Questionnaire (MOXFQ).

At a mean follow up of 43.0 months (95% CI 35.6 – 50.4), both the AOFAS and MOXFQ scores were significantly higher in the PRIF group compared to the control ORIF group (AOFAS 89.1vs 76.4, p=0.03; MOXFQ 10.0 vs 27.6, p=0.03). There were no immediate postoperative complications in either group. At final follow up, there was no radiological evidence of midfoot osteoarthritis in any patient in the PRIF group. Three patients in the ORIF group developed midfoot osteoarthritis, one of whom required midfoot fusion.

PRIF is a technically simple, less invasive method of operative stabilisation of low energy Lisfranc injures which also appears to be associated with better mid-term clinical outcomes compared to ORIF.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_5 | Pages 15 - 15
1 May 2015
Laubscher M El-Tawil S Ibrahim I Mitchell C Smitham P Chen P Goodier D Gorjon J Richards R Taylor S Calder P
Full Access

Background:

Little is known about the forces carried by the Taylor Spatial Frame (TSF) hexapod fixator. Our aim was to measure the TSF resultant force and how this changed during the consolidation phase.

Method:

Five patients undergoing correction of tibial deformities were recruited. Measurements were taken at 2, 4, 8 and 12 weeks post-correction during various activities. Instrumented struts incorporating strain gauges measuring axial force were temporarily used each time. Strut forces and lengths were used to determine frame kinetics. The resultant axial fixator forces and moments were calculated relative to sitting. Ground reaction forces (GRF) were measured using the treadmill force plates.