header advert
Results 1 - 5 of 5
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 58 - 58
17 Nov 2023
Huang D Buchanan F Clarke S
Full Access

Abstract

Objectives

Osteoporotic fractures tend to be more challenging than fractures in healthy bone and the efficacy of metal screw fixation decreases with decreasing bone mineral density making it more difficult for such screws to gain purchase. This leads to increased complication rates such as malunion, non-union and implant failure (1). Bioresorbable polymer devices have seen clinical success in fracture fixation and are a promising alternative for metallic devices but are rarely used in the osteoporotic population. To address this, we are developing a system that may allow osteoporotic patients to avail of bioresorbable devices (2) but it is important to establish if patients have any reservations about having a plastic resorbable device instead of a metal one. Therefore the aim of this study was to explore the acceptability of bioresorbable fracture fixation devices to people with osteoporosis.

Methods

A cross sectional descriptive study was conducted in a UK wide population using convenience sampling. An online survey comprising nine survey questions and nine demographic questions was developed in Microsoft Teams and tested for face validity in a small pilot study (n=6). Following amendments and ethical approval, the survey was distributed by the Royal Osteoporosis Society on their website and social media platforms. People were invited to take part if they lived in the UK, were over 18 years old and had been diagnosed with osteoporosis. The survey was open for three weeks in May 2023. Responses were analysed using descriptive statistics.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 122 - 122
1 Nov 2018
McFadden R Chan C Carson L Buchanan F
Full Access

With an ever-increasing aging population, total hip and knee arthroplasty is projected to increase by 137% and 601%, respectively, between the period; 2005–2030. Prosthetic Join Infection (PJI) occurs in approximately 2% of total joint replacements (TJRs) in the U.S. PJI is primarily caused by adherence of bacteria to the surface of the prosthesis, ultimately forming an irreversibly attached community of sessile bacteria, known as a biofilm, highly tolerant to antibiotic treatment. Often the only resolution if the ensuing chronic infection is surgical removal of the implant – at high cost for the patient (increased morbidity), and for healthcare resources. Strategies to prevent bacterial adherence have significant potential for medical impact. Laser surface treatment using an automated continuous wave (CW) fiber laser system has shown promise in producing anti-adherent and bactericidal surfaces. Work presented here aims to investigate the effect of this approach on orthopaedic metals as a proof of concept, specifically Ti-6Al-4V (kindly supplied by Stryker Orthopaedics, Limerick). A coupon was surface treated using a laser (MLS-4030; Micro Lasersystems BV, Driel). Samples were incubated in Müller Hinton Broth (MHB) inoculated with methicillin resistant Staphylococcus aureus (MRSA; ATCC 43300) for 24h before Live/Dead staining (BacLight™ solution; Molecular Probes) and inspection by fluorescence microscopy (GXM-L3201 LED; GX Optical). Images were analysed using ImageJ software (NIH) and a significant reduction (p > 0.05, n=24) in total biofilm coverage and Live/Dead ratio was observed between the laser treated and as received surfaces. This data demonstrates the anti-adherent, and indeed bactericidal, effect of Laser-surface treatment.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 48 - 48
1 Nov 2018
Walsh P Buchanan F
Full Access

Diatoms are unicellular microalgae whose cell walls are composed of remarkably uniform, hierarchical micro/nanopatterned, amorphous biosilica that cannot be replicated synthetically. Each species hosts its own unique morphology which is identically replicated generation-to-generation. There are currently estimated to be over 200,000 different diatom species, each with their own unique shape and morphology. This offers a huge array of surface topographies, particle sizes and shapes, each with the same silica precursor. Our research to date has shown that diatom-biosilica is non-cyctotoxic to J774.2 macrophages and hBMSC cells and does not invoke an immunological response or organ toxicity (kidney, spleen and liver) when tested in a murine model. Before testing diatom-biosilica in vivo in an animal fracture model, methods to incorporate the frustules into the defect are being investigated. Two methods have been developed 1) using a bioresorbable hydrogel and 2) 3-D printed polymer-biosilica scaffolds. Both methods have shown promising results with enhanced mechanical properties with the addition of the diatom-biosilica. Work is ongoing to further map and quantify the role of surface topography and chemical cues on cell fate through the systematic in vitro studies of different species of diatom-biosilica.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 62 - 62
1 Nov 2018
Geddes L Carson L Themistou E Buchanan F
Full Access

Research in orthopaedics is now moving away from permanent metallic implants, and looking towards the use of bioresorbable polymers (e.g. PLLA, PGA and related co-polymers) that, when implanted into the injured site, bioresorb as the tissue heals. However, reports of a delayed inflammatory reponse occurring in the late stages of polymer degradation has limited the wide scale use of these polymers. Few studies assess the long-term biocompatibility of these polymers and with an increasing market for bioresorbable materials it is anticipated that this will be a future issue. This work aims to develop a predictive tool that can be used to assess the delayed inflammatory response of poly(D,L-lactide-co-glycolide) (PDLGA) using in vitro tests. An elevated temperature accelerated test (47oC) was developed and utilitised to induce predetermined amounts of degradation in PDLGA. This was used to mimic a range of clinically relevant in vivo implantation times up to 5–6 months. All pre-degradion work was performed under sterile conditions, in PBS solution. At predetermined time intervals, indicators of late stage inflammation will be assessed using an MTT cytotoxicity assay, an inflammation antibody array and an ELISA analysis for inflammatory factors, with mouse L929 fibroblasts, RAW264.7 and primary BMDM macrophages. It is hypothosised that at the later degradation time intervals signs of inflammatory factors will be observed. The methodologies developed in this work can be applied to the optimisation of polymer degradation profiles to minimise late-stage inflammatory repsonse and identification of beneficial additives in this regard.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 45 - 45
1 Aug 2012
Craig J Buchanan F O'Hara R Dunne N
Full Access

Vertebroplasty is a minimal invasive surgical procedure for treatment of vertebral compressive fractures, whereby cement is injected percutaneously into a vertebral body. Cement viscosity is believed to influence injectability, cement wash-out and leakage. Altering the liquid to powder ratio can affect the viscosity, level of cohesion and extent cement fill within the vertebral body and the ultimately strength and stiffness of the cement-vertebra composite. The association of these combined factors remains unclear. The aim of this study was to determine the relationship between cement viscosity and the potential augmentation of strength and stiffness in a model simulating in-vitro prophylactic vertebroplasty of osteoporotic vertebral bodies.

Samples of synthetic bone (Sawbone) representing osteoporotic bone were manually injected with 1mL of calcium phosphate cement using a 11G cannulated needle. Calcium phosphate cement was produced by mixing alpha-tricalcium phosphate, calcium carbonate and hydroxyapatite with an aqueous solution of 5 wt% disodium hydrogen phosphate. Three liquid to powder ratio (LPR) representing different viscosity levels were used; i.e. 0.5mL/g (low viscosity), 0.45mL/g (medium viscosity) and 0.35mL/g (high viscosity). Cement filled samples were then placed in an oven (37oC) for 20 min and then immersed in Ringer's solution (37oC) for 3 days. Samples of synthetic bone without cement injection were used as controls.

Potential for leakage and wash-out was determined using gravimetric analysis. Extent of cement fill was determined using computer tomography (CT).

Samples were tested under axial compression at a rate of 1 mm/min and the strength and stiffness determined. Statistical significance against controls was determined using a one-way analysis of variance (p<0.05).

Low viscosity cement showed more cement leakage (p=0.512) and increased cement wash-out after 3 days in Ringer's solution (p=0.476). Qualitative assessment of cement fill within the vertebral body using CT imaging supported the wash-out results. The strength (p<0.05-0.01) and stiffness (p<0.01) of samples significantly increased by cement injection in comparison to control, the extent of this increase was greater with increasing cement viscosity.

Linear correlation analysis showed a definite association between the mechanical properties and viscosity of injected cement and was dependent on the amount of cement retained within the synthetic bone post-setting.