header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 13 - 13
1 Mar 2013
Matthies A Racasan R Bills P Panagiotidou A Blunt L Skinner J Blunn G Hart A
Full Access

Material loss at the head-stem taper junction may contribute to the high early failure rates of stemmed large head metal-on-metal (LH-MOM) hip replacements. We sought to quantify both wear and corrosion and by doing so determine the main mechanism of material loss at the taper. This was a retrospective study of 78 patients having undergone revision of a LH-MOM hip replacement. All relevant clinical data was recorded. Corrosion was assessed using light microscopy and scanning electron microscopy, and graded according to a well-published classification system. We then measured the volumetric wear of the bearing and taper surfaces. Evidence of at least mild taper corrosion was seen in 90% cases, with 46% severely corroded. SEM confirmed the presence of corrosion debris, pits and fretting damage. However, volumetric wear of the taper surfaces was significantly lower than that of the bearing surfaces (p = 0.015). Our study supports corrosion as the predominant mechanism of material loss at the taper junction of LH-MOM hip replacements. Although the volume of material loss is low, the ionic products may be more biologically active compared to the particulate debris arising from the bearing surfaces.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 14 - 14
1 Mar 2013
Hart A Matthies A Racasan R Bills P Panagiotidou A Blunt L Blunn G Skinner J
Full Access

It has been speculated that high wear at the head-stem taper may contribute to the high failure rates reported for stemmed large head metal-on-metal (LH-MOM) hips. In this study of 53 retrieved LH-MOM hip replacements, we sought to determine the relative contributions of the bearing and taper surfaces to the total wear volume. Prior to revision, we recorded the relevant clinical variables, including whole blood cobalt and chromium levels. Volumetric wear of the bearing surfaces was measured using a coordinate measuring machine and of the taper surfaces using a roundness measuring machine. The mean taper wear volume was lower than the combined bearing surface wear volume (p = 0.015). On average the taper contributed 32.9% of the total wear volume, and in only 28% cases was the taper wear volume greater than the bearing surface wear volume. Despite contributing less to the total material loss than the bearing surfaces, the head-stem taper junction remains an important source of implant-derived wear debris. Furthermore, material loss at the taper is likely to involve corrosion and it is possible that the material released may be more biologically active than that from the bearing surface.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 100 - 100
1 May 2012
Bills P Underwood RJ Cann PM Hart A
Full Access

INTRODUCTION

There is increasing worldwide interest in the assessment of wear in explanted hip components. This is due is part to high profile failures of orthopaedic components in the US, whilst in the UK hip resurfacings have been experiencing a higher than expected failure rate. The reasons for these failures are not well understood, with data from the NJR suggesting the 43% of MoM resurfacing failures are unexplained.

Wear analysis is a vital tool in determining failure mechanisms and ultimately improving the longevity of joint replacements through improved design and manufacturing control. There are currently no relevant measurement standards for the evaluation of retrieved orthopaedic components. This paper will assess two of the most commonly used techniques namely roundness measurement and co-ordinate measurement. The advantages and disadvantages of both techniques are considered in this paper.

ROUNDNESS MACHINE

The Talyrond 365 is a stylus based roundness machine. The component is located on a rotating table and the stylus measures the deviation from a perfect circle as the component is slowly rotated. The Talyrond measures a single profile to an accuracy of 30 nm and up to 72,000 data points per revolution. The air spindle has a radial accuracy of <0.02 μm and the Talymin gauge a minimum resolution of 12 nm. Individual roundness profiles can be stitched together to build up 3D cylinder maps, allowing 3D pictures of sections of explanted hip components to be generated.