header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 296 - 296
1 May 2009
Avella C Smith R Dudhia J
Full Access

Introduction: Tendon injury is an important cause of injury in racehorses, with flexor tendon and suspensory ligament injuries accounting for 46% of all musculoskeletal injuries at British racecourses (1). In the galloping horse the superficial digital flexor tendon (SDFT) undergoes strains that are close to the functional limit of the tendon (2) and it is hypothesised that exercise induces cumulative microdamage in the SDFT of skeletally mature horses which may predispose to clinical disease. We hypothesised that matrix metalloproteinases (MMPs) play a role in the process of tendon degeneration induced by cyclical loading and investigated this using an in vitro model.

Methods: Mid-metacarpal SDFTs were harvested from Thoroughbred horses that were euthanased for non-orthopaedic reasons. Tendon explants (2mm x 2mm x 60mm) were maintained in DMEM and placed in custom designed loading cassettes which were cyclically loaded in an incubator using a Dartec materials testing device for 24 hours with 5% strain and at a frequency of 1Hz. Control explants were placed in similar cassettes but were not loaded. The ultimate tensile strength (UTS) of the tendon was assessed using a destructive test at the end of the 24 hour loading period. The experiments were repeated using non-viable tendon explants, or in the presence of a pan-MMP specific inhibitor (Illomastat, 25 μM).

Results: Cyclical loading induced a 30% decrease in the UTS of tendons of immature and young mature (< 10 years of age) horses but this increased to a 50% reduction in older (10–30 years of age) horses compared to controls. This loss of UTS was prevented in tendon explants with non-viable cells or with a pan-MMP inhibitor applied to the live explants prior to cyclical loading.

Conclusions: The results suggest that an MMP mediated mechanism plays a pivotal role in tendon degeneration following cyclical loading in vitro. Current work including analysis of gene expression and quantification of MMPs within the tendon tissue aims to identify the key MMPs responsible for the loss of tendon UTS following cyclical loading. This will hopefully enable therapeutic strategies to be developed to slow or stop the age-associated tendon degeneration that predisposes to overstrain injury, and thereby help prevent this common orthopaedic disease in horses.