header advert
Results 1 - 10 of 10
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 539 - 539
1 Dec 2013
Alvi H Luo M Talati R Sweeney P Patel A Yaffe M Stulberg SD
Full Access

Introduction:

Total knee arthroplasty (TKA) is an effective operation for the management of osteoarthritis of the knee. Conventional technique utilizing manual instrumentation (MI) allows for reproducible and accurate execution of the procedure. The most common techniques make use of intramedullary femoral guides and either extrameduallary or intrameduallary tibial guides. While these methods can achieve excellent results in the majority of patients, those with ipsilateral hardware, post-traumatic deformity or abnormal anatomy may preclude the accurate use of these techniques.

Patient-specific instrumentation (PSI) is an alternative innovation for total knee arthroplasty. Utilizing magnetic resonance imaging (MRI) or computed tomography (CT), custom guide blocks are fabricated based on a patient's unique anatomy. This allows for the benefits of computer assisted navigation (CAN) but without the increased operative times or the high learning curve associated with it. Furthermore it allows the use of familiar cutting blocks and guides to check the accuracy of the PSI guide blocks. In this study we sought to evaluate the accuracy of PSI techniques in patients with previous ipsilateral hardware, which would make the use of MI technically challenging and possibly subject to inaccuracy.

Methods:

After reviewing our database of 300 PSI total knee arthroplasty patients, 16 patients were identified (10 male, 6 female) using the Zimmer NexGen Patient Specific Instrumentation System. Fourteen patients included in the study had a preexisting total hip arthroplasty on the ipsilateral side, 1 had a preexisting sliding hip screw, and 1 patient had a preexisting cephalomedullary nail. Postoperative mechanical axis alignment measurements were performed using plain long-standing radiographs. The American Knee Society Score was used to evaluate clinical outcomes postoperatively.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 176 - 176
1 Dec 2013
Stulberg SD Alvi H Talati R Patel A Yaffe M
Full Access

Introduction:

Patient specific instrumentation (PSI) is an innovative technology in total knee arthroplasty. With the use of a preoperative MRI or CT scan, custom guide blocks are individually manufactured for each patient. Contrary to other TKA technologies such as computer-assisted surgery, PSI utilizes measured resection technique rather than a primarily ligament balancing technique. This has the potential to negatively affect the operating surgeon's ability to achieve optimal soft tissue balancing, which is especially critical in patients with severe lower extremity malalignment. Despite early research suggesting that PSI is accurate, has a low learning curve, and can reduce OR time, it remains unclear whether a surgeon using PSI can achieve optimal soft tissue balancing using a measured resection technique. The purpose of this study is to evaluate the efficacy of PSI in patients with severe preoperative limb alignment deformities.

Methods:

Fifty PSI total knee arthroplasties were performed on 46 patients (21 male, 25 female) using the Zimmer NexGen Patient Specific Instrumentation system. Each patient included in the study had a minimum preoperative deformity of at least 10° varus or valgus measured on preoperative long leg standing radiographs, Zimmer preoperative software or both. Forty-three of the included knees had a varus deformity and 7 had a valgus deformity. Preoperative mechanical axis alignment measurements were obtained using the PSI preoperative planning software and were manually calculated using pre-operative long leg standing radiographs. Postoperative mechanical axis alignment measurements were calculated using plain long leg standing radiographs. The Knee Society Scoring System was used to evaluate clinical and functional outcomes at 1 to 6 months postoperatively.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 67 - 67
1 Dec 2013
Goyal N Patel A Yaffe M Luo M Stulberg SD
Full Access

Introduction:

Patient specific instrumentation (PSI) generates customized guides from a magnetic resonance imaging based preoperative plan for use in total knee arthroplasty (TKA). PSI software must be able to accommodate differences in implant design. The purpose of the present study was to determine whether any differences in the accuracy of limb alignment, component alignment, component sizing, or bony resection could be identified in patients undergoing PSI TKA with identical PSI software and one of two different implant systems.

Methods:

In this case-control study, two different implant systems from the same manufacturer were evaluated in 37 consecutive PSI TKA (Group 1) and 123 consecutive PSI TKA (Group 2) performed by a single surgeon. A third group (Group 3) consisted of 12 consecutive TKA performed with manual instrumentation and the same implant system as Group 1. Identical software was used to generate a preoperative plan from which planned limb alignment, component alignment, component sizes, and bony resection were determined. Intraoperatively, actual component sizes, bony resection, and recut frequency were determined. Long-standing and lateral radiographs were obtained preoperatively and 4-weeks postoperatively to evaluate limb and component alignment.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 106 - 106
1 Aug 2013
Alvi H Talati R Patel A Yaffe M Stulberg S
Full Access

Introduction

Patient specific instrumentation (PSI) is an innovative technology in total knee arthroplasty (TKA). With the use of a preoperative MRI or CT scan, custom guide blocks are individually manufactured for each patient. Contrary to other TKA technologies such as computer-assisted surgery, PSI utilises measured resection technique rather than a primarily ligament balancing technique. This has the potential to negatively affect the operating surgeon's ability to achieve optimal soft tissue balancing, which is especially critical in patients with severe lower extremity malalignment. Despite early research suggesting that PSI is accurate, has a low learning curve, and can reduce operating room time, it remains unclear whether a surgeon using PSI can achieve optimal soft tissue balancing using a measured resection technique. The purpose of this study is to evaluate the efficacy of PSI in patients with severe preoperative limb alignment deformities.

Methods

Fifty PSI total knee arthroplasties were performed on 46 patients (21 male, 25 female) using the Zimmer NexGen Patient Specific Instrumentation system. Each patient included in the study had a minimum preoperative deformity of at least 10° varus or valgus measured on preoperative long leg standing radiographs, Zimmer preoperative software or both. Forty-three of the included knees had a varus deformity and 7 had a valgus deformity. Preoperative mechanical axis alignment measurements were obtained using the PSI preoperative planning software and were manually calculated using preoperative long leg standing radiographs. Postoperative mechanical axis alignment measurements were calculated using plain long leg standing radiographs. The Knee Society Scoring System was used to evaluate clinical and functional outcomes at 1 to 6 months postoperatively.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 362 - 362
1 Mar 2013
Yaffe M Patel A Luo M Chan P Cayo M Stulberg SD
Full Access

Introduction

Patient specific instruments (PSI) and computer-assisted surgery (CAS) are innovative technologies that offer the potential to improve the accuracy and reproducibility with which a total knee arthroplasty (TKA) is performed. It has not been established whether clinical, functional, or radiographic outcomes between PSI, CAS, and manual TKA differ in the hands of an experienced TKA surgeon. The purpose of this study was to evaluate clinical, functional and radiographic outcomes between TKA performed with PSI, CAS, and manual instruments at short-term follow-up. Our hypothesis was that at early follow-up, we would be unable to elucidate any significant differences between the groups using the most commonly utilized outcomes measures.

Methods

40 PSI, 38 CAS, and 40 manual TKA were performed by a single surgeon. The groups were similar in regards to age, sex, and preoperative diagnosis. The Knee Society Scoring System was used to evaluate patient clinical and functional outcome scores preoperatively and at 1 and 6 months postoperatively. Long-standing AP radiographs were obtained pre and postoperative to evaluate mechanical axis alignment.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 300 - 300
1 Mar 2013
Patel A Yaffe M Talati R Meisles J Ghate R Stulberg SD
Full Access

Introduction

Proper femoral component rotation is a crucial factor in successful total knee arthroplasty (TKA). Femoral component rotation using anatomic landmarks has traditionally been established by referencing the transepicondylar axis (TEA), Whiteside's Line (WSL), or the posterior condylar axis (PCA). TEA is thought to best approximate the flexion-axis of the knee, however WSL or PCA are commonly used as surrogates of the TEA in the operating room due to their accessibility. The relationship of these anatomic landmarks has been previously investigated in anatomic and computed tomography based studies. The relatively few knees evaluated have limited the power of these studies. Patient Specific Instrumentation (PSI) utilizing magnetic resonance imaging (MRI) is an emerging technology in total knee replacement. The purpose of this study was to use magnetic resonance imaging based planning software to assess the relationship of WSL and PCA to the TEA and to determine if the relationships were influenced by the magnitude of the pre-operative coronal deformity.

Methods

Five hundred sixty total knee replacements were performed in 510 patients utilizing PSI. The Materialize preoperative planning software was utilized to determine the rotational relationships of TEA, WSL, and PCA (Fig 1). The coronal plane deformity of each patient was also evaluated utilizing the MRI-based imaging and planning software.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 40 - 40
1 Oct 2012
McCoy B Yaffe M Stulberg S
Full Access

Custom instrumentation in TKA utilises pre-operative imaging to generate a customised guide for cutting block placement. The surgeon is able to modify the plan using three-dimensional software. Although this technology is increasingly gaining acceptance, there is a paucity of clinical data supporting it.

One hundred and eleven patients underwent primary TKA using the Zimmer Patient-Specific Instrumentation (PSI) system, in 28 of the cases surgical navigation was used to validate the PSI-generated cuts. Alignment measurements included long-leg alignment and biplanar distal femoral and proximal tibial cuts. Further measurements evaluated femoral implant placement in the AP plane, femoral component rotation, measured bone resection and implant sizing accuracy.

The mean final limb alignment as recorded by computer-assisted surgical (CAS) tools was 0.3° of varus. Only two limbs were malaligned by greater than 3°. The femoral component had a mean alignment of 0.3° of valgus and 4.5° of flexion (PSI plan 3° flexion). The predicted femoral size was accurate in 89% of cases and the anterior femoral cut was congruent with the anterior cortex in 92% of cases. The PSI-directed femoral component rotation was consistent with the surgeon's perceived rotation in 95% of cases. The posterior condylar bone resection had a mean difference of < 1mm from the predicted resection.

The tibial component had a mean alignment of 0.5° of varus and 8.5° of posterior slope (PSI plan 7° posterior slope). The only statistically significant deviation in alignment was the increased tibial slope (p = 0.046). The tibial component size was accurately predicted in 66% of cases.

Custom instrumentation in total knee arthroplasty accurately achieved implant and limb alignment in our study. The plan was more reproducible on the femoral slide. The overestimation of tibial slope and tibial sizing incongruity were related to some of the reference points for the software. A potential benefit of this technology is improved mid-flexion stability by accurately determining femoral component size, placement, and rotation. Further studies will need to be conducted to determine the efficiency and cost-effectiveness of this technology.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 221 - 221
1 Sep 2012
Yaffe M McCoy B Patel A Stulberg SD
Full Access

Introduction

Computer-assisted surgery (CAS) is a tool developed to allow accurate limb and implant alignment in TKA. The strength of the technology is that it allows the surgeon to assess soft tissue balance and ligament laxity in flexion and extension. The accuracy of this ligament balancing technology depends upon an accurate determination of femoral component size. This size is established with intraoperative surface registration techniques. Customized instrumentation (CI) is a measured resection technique in which component size is established on preoperative 3D MRI reconstructions. The purpose of this study is to determine how these two computer-based technologies compare with regard to the accuracy with which femoral component size is established in TKA.

Methods

67 TKA were performed using CI and 30 TKA were performed using CAS by a single surgeon. CI-predicted and CAS-predicted femoral component size were compared to actual component selection. The process by which CI and CAS perform an anatomic registration was evaluated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 222 - 222
1 Sep 2012
McCoy B Yaffe M Stulberg SD
Full Access

Introduction

Custom instrumentation in TKA utilizes pre-operative imaging to generate a customized guide for cutting block placement (Figure 1). The surgeon is able to modify the plan using three-dimensional software (Figure 2). Although this technology is increasingly gaining acceptance, there is a paucity of clinical data supporting it.

Methods

One hundred and eleven patients underwent primary TKA using the Patient-Specific Instrumentation (PSI) system, in twenty-eight of the cases surgical navigation was used to validate the PSI-generated cuts. Alignment measurements included long-leg alignment and biplanar distal femoral and proximal tibial cuts. Further measurements evaluated femoral implant placement in the AP plane, femoral component rotation, measured bone resection and implant sizing accuracy.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 139 - 139
1 Sep 2012
Patel A Yaffe M McCoy B Stulberg SD
Full Access

Introduction

Most surgeons utilize one of three axis options in conventional total knee arthroplasty (TKA), the transepicondylar axis (TEA), Whiteside's line (WSL) or the posterior condylar axis (PCA) with an external rotation correction factor. Each option has limitations and no clear algorithm has been determined for which option to use and when. Many surgeons believe the TEA to be the gold standard for determining rotation however it can be difficult to access intraoperatively. WSL and PCA have been used as surrogates for determining axial rotation in conventional TKA but may also be prone to error. MRI based preoperative planning systems overcome intraoperative limitations while accounting for the individual anatomy of each patient, thus helping optimize femoral component rotation. The goal of this study was to examine if coronal plane deformity had any effect on the relationship of conventional referencing options such as WSL and PCA to the TEA.

Methods

Utilizing a preoperative planning software based on MRI, we compared the preoperative posterior femoral condyle resections for three different axis options in 176 TKA. The difference in bone resection amount was used to determine the rotational differences between the axis options in all knees. Assuming that the TEA was the ideal rotational axis, we compared the TEA to both WSL and PCA. A 1-sample t-test and paired t-test were then used to determine if there was a significant rotational difference between the various axis options when accounting for degree and direction of preoperative deformity in the coronal plane.