header advert
Results 1 - 4 of 4
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 56 - 56
1 Mar 2021
Schneider P Thoren J Cushnie D Del Balso C Tieszer C Sanders D
Full Access

Flexible fixation techniques combined with anatomic (open) syndesmosis reduction have demonstrated improved functional outcomes and rates of malreduction. Suture-button devices allow physiologic motion of the syndesmosis without need for implant removal, which may lower the risk of recurrent syndesmotic diastasis. There is limited longer-term assessment of the maintenance of reduction between static and flexible syndesmotic fixation using bilateral ankle CT evaluation.

This is an a priori planned subgroup analysis of a multi-centre, randomized clinical trial comparing static syndesmosis fixation (two 3.5 mm screws) with flexible fixation (single knotless Tightrope) for patients with AO- OTA 44-C injuries. Patients who completed bilateral ankle CT scans at 3- and 12-month follow-up were included. The primary outcome measure was syndesmotic malreduction based on bilateral ankle CT scans, using the uninjured, contralateral ankle as a control. Anterior (ASD), middle (MSD), and posterior (PSD) syndesmosis distance were calculated to measure syndesmosis reduction. Secondary outcomes included re-operation, adverse events and functional outcomes including the EQ5D, Olerud-Molander Ankle Score (OM), Foot and Ankle Disability Index (FADI), and Work Productivity Activity Impairment Questionnaire (WPAI). Paired samples t-tests were used to compare injured to control ankles (R, v 3.5.1).

42 patients (24 Group S, 18 Group T) were included. ASD for Group T was 5.22mm (95%CI 4.69–5.77) at 3 months compared to 4.26mm (95%CI 3.82–4.71; p=0.007) in controls and 5.38mm (95%CI 4.72–6.04) at 12 months compared to 4.44mm (95%CI 3.73–5.16; p=0.048) in controls. ASD for Group S was 4.63mm (95%CI 4.17– 5.10) at 3 months compared to 4.67mm (95%CI 4.24–5.10; p=0.61) in controls, but significantly increased to 5.73mm (95%CI 4.81–6.66) at 12 months compared to 4.65mm (95%CI 4.15–5.15; p=0.04) in controls. MSD results were similar; Group T had a larger MSD than control ankles at 3 months (p=0.03) and 12 months (p=0.01), while the MSD in Group S was not different at 3 months (p=0.80) but increased at 12 months (p=<0.01). 88% (21/24) of Group S had broken or removed screws by 12 months. Unplanned re-operation was 15% in Group S and 4% in Group T (p=0.02), with an overall re-operation rate of 30% in Group S. There was no significant difference between treatment groups for EQ-5D, OM, FADI or WPAI at 3- or 12-month follow-up.

Tightrope fixation resulted in greater diastasis of the ASD and MSD compared to contralateral, uninjured ankles at 3- and 12-months post-fixation. Group S initially had syndesmotic reduction similar to control ankles, but between 3- and 12-months post-fixation, there was significantly increased syndesmosis diastasis compared to controls. The majority of Group S (88%) had either broken screws or scheduled screw removal, which may explain the increased tibio-fibular diastasis seen at 12-months.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 11 - 11
1 Mar 2021
Wong M Wiens C Kooner S Buckley R Duffy P Korley R Martin R Sanders D Edwards B Schneider P
Full Access

Nearly one quarter of ankle fractures have a recognized syndesmosis injury. An intact syndesmosis ligament complex stabilizes the distal tibio-fibular joint while allowing small, physiologic amounts of relative motion. When injured, malreduction of the syndesmosis has been found to be the most important independent factor that contributes to inferior functional outcomes. Despite this, significant variability in surgical treatment remains. This may be due to a poor understanding of normal dynamic syndesmosis motion and the resultant impact of static and dynamic fixation on post-injury syndesmosis kinematics. As the syndesmosis is a dynamic structure, conventional CT static images do not provide a complete picture of syndesmosis position, giving potentially misleading results. Dynamic CT technology has the ability to image joints in real time, as they are moved through a range-of-motion (ROM). The aim of this study was to determine if syndesmosis position changes significantly throughout ankle range of motion, thus warranting further investigation with dynamic CT.

This is an a priori planned subgroup analysis of a larger multicentre randomized clinical trial, in which patients with AO-OTA 44-C injuries were randomized to either Tightrope or screw fixation. Bilateral ankle CT scans were performed at 1 year post-injury, while patients moved from maximal dorsiflexion (DF) to maximal plantar flexion (PF). In the uninjured ankles, three measurements were taken at one cm proximal to the ankle joint line in maximal DF and maximal PF: Anterior (ASD), middle (MSD), and posterior (PSD) syndesmosis distance, in order to determine normal syndesmosis position. Paired samples t-tests compared measurements taken at maximal DF and maximal PF.

Twelve patients (eight male, six female) were included, with a mean age of 44 years (±13years). The mean maximal DF achieved was 1-degree (± 7-degrees), whereas the mean maximal PF was 47-degrees (± 8-degrees). The ASD in DF was 3.0mm (± 1.1mm) versus 1.9mm (± 0.8mm) in PF (p<0.01). The MSD in DF was 3.3mm (±1.1mm) versus 2.3mm (±0.9mm) in PF (p<0.01). The PSD in DF was 5.3mm (±1.5mm) versus 4.6mm (±1.9mm) in PF (p<0.01). These values are consistent with the range of normal parameters previously reported in the literature, however this is the first study to report the ankle position at which these measurements are acquired and that there is a significant change in syndesmosis measurements based on ankle position.

Normal syndesmosis position changes in uninjured ankles significantly throughout range of motion. This motion may contribute to the variation in normal anatomy previously reported and controversies surrounding quantifying anatomic reduction after injury, as the ankle position is not routinely standardized, but rather static measurements are taken at patient-selected ankle positions. Dynamic CT is a promising modality to quantify normal ankle kinematics, in order to better understand normal syndesmosis motion. This information will help optimize assessment of reduction methods and potentially improve patient outcomes. Future directions include side-to-side comparison using dynamic CT analysis in healthy volunteers.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 62 - 62
1 Jul 2020
Nowak L MacNevin M Sanders D Lawendy A McKee MD Schemitsch E Walker R DiGiovanni R
Full Access

This study was designed to compare atypical hip fractures with a matched cohort of standard hip fractures to evaluate the difference in outcomes.

Patients from the American College of Surgeons National Surgical Quality Improvement Program's (NSQIP) targeted hip fracture data file (containing a more comprehensive set of variables collected on 9,390 specially targeted hip fracture patients, including the differentiation of atypical from standard hip fractures) were merged with the standard 2016 NSQIP data file. Atypical hip fracture patients aged 18 years and older in 2016 were identified via the targeted hip fracture data file and matched to two standard hip fracture controls by age, sex, and fracture location. Patient demographics, length of hospital stay, 30-day mortality, major and minor complications, and other hip-specific variables were identified from the database. Binary outcomes were compared using the McNemar's test for paired groups, and continuous outcomes were compared using a paired t-test.

Ninety-five atypical hip fractures were identified, and compared to 190 age, sex, and fracture location matched standard hip fracture controls. There was no statistical difference in body mass index (BMI), race, ASA score, smoking status, timing of fixation, or functional status between the two groups (P>0.05). Thirty-day mortality was significantly higher in the atypical hip fracture group (atypical 7.36%, standard 2.11% p

This is the first study, to our knowledge, that demonstrates an increase in the rate of mortality in atypical hip fractures. Comparing atypical hip fractures with a matched cohort of standard hip fractures revealed a significantly greater 30-day mortality rate with an odds ratio of 3.62 in atypical hip fractures (95% CI 1.03–12.68). Prospective, clinical studies are recommended to further investigate these findings.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 75 - 75
1 Dec 2016
Sellan M Bryant D Tieszer C MacLeod M Papp S Lawendy A Liew A Viskontkas D Coles C Carey T Gofton W Trendholm A Stone T Leighton R Sanders D
Full Access

The benefit of using a long intramedullary device for the treatment of geriatric intertrochanteric hip fractures is unknown. The InterTAN device (Smith and Nephew, Memphis TN) is offered in either Short (180–200 mm) or Long (260–460 mm) constructs and was designed to provide stable compression across primary intertrochanteric fracture fragments. The objective of our study was to determine whether Short InterTANs are equivalent to Long InterTANs in terms of functional and adverse outcomes for the treatment of geriatric intertrochanteric hip fractures.

108 patients with OTA classification 31A–1 and 31A–2 intertrochanteric hip fractures were included in our study and prospectively followed at one of four Canadian Level-1 Trauma Centres. Our primary outcomes included two validated primary outcome measures: the Functional Independence Measure (FIM), to measure function, and the Timed Up and Go (TUG), to measure motor performance. Secondary outcome measures included blood loss, length of procedure, length of stay and adverse events. A pre-injury FIM was measured by retrospective recall and all postoperative outcomes were assessed on postoperative day 3, at discharge, at 6 weeks, 3 months, 6 months and 12 months postoperatively. Unpaired t-tests and Chi-square tests were used for the comparison of continuous and categorical variables respectively between the Short and Long InterTAN groups. A statistically significant difference was defined as p<0.05.

Our study included 71 Short InterTAN and 37 Long InterTAN patients with 31A–1 and 31A–2 intertrochanteric hip fractures. Age, sex, BMI, side, living status and comorbidities were similar between the two groups. The mean operative time was significantly lower in the Short InterTAN group (61 mins) as compared to the Long InterTAN group (71 mins)(p0.05). There were 5 periprosthetic femur fractures in the short InterTAN group versus 1 in the long InterTAN group. Non-mechanical adverse outcomes such as myocardial infarction, pulmonary embolism, urinary tract infections, pneumonia and death all had similar incidence rates between the two InterTAN groups.

Both the Short and Long InterTAN patient cohorts displayed similar improvements in performance and overall function over the course of a year following intertrochanteric hip fracture fixation. The recorded operative times for Short InterTAN fixation were significantly shorter than those recorded for the Long InterTAN patients. Alternatively, a significantly higher proportion of Short InterTAN patients sustained periprosthetic femur fractures within a year of implantation as compared to the Long InterTAN group.