header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 57 - 57
1 Jan 2013
Ben-David D Palmanovich E Brin Y Laver L Massarwe S Stern A Nyska M
Full Access

Introduction

Degenerative, inflammatory, and posttraumatic arthritis of the ankle are the primary indications for total ankle arthroplasty

Ankle arthrodesis has long been the “gold standard” for the surgical treatment

Total Ankle Arthroplasty. implant survivorship has been reported to range from 70% to 98% at three to six years

The combination of younger age and hindfoot arthrodesis or osteoarthritis may lead to a relative increase in failure rates after TAA

Intraoperative complication include malaligment, fracture and tendon Postoperative complications include syndesmotic nonunion, wound problems, infections and component instability and lysis

After TAA few difficulties mainly due to poor Talar and Tibial bone stock. It is difficult to stabilize the fusion and usually there is shortening after removal of the implant. Also there is a need for massive bone graft-allograft or autograft.

In cases when there is significant bone loss there is a need for stable reconstruction and stabilization of the hindfoot. Bone grafting with structural bone graft may collapse and it has to be stabilized with screws or nail.

Methods

We developed technique which included distraction of the fusion area and inserting a Titanium cylindrical spinal cage filled with bone graft. Than guide wire was inserted in through the cage under fluoroscopy and a compression screw was introduced causing compression of the fusion area against the cage gaining stabilization of the fusion area.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 312 - 312
1 Nov 2002
Ben-David D Mosheiff R Beyth S Suraki O Liebergall M
Full Access

Introduction: Fluoroscopy is routinely used for real-time intra-operative localization of patient anatomy and surgical instrument positioning. Using this radiographic information the orthopedic surgeon inserts different implants into bone. Despite its utility, however, fluoroscopy does have disadvantages. The most notable is potential occupational radiation exposure. Conventional fluoroscopy usually provides only one plane at a time, whereas at least two planes are needed for optimal placement of an implant. By combining a standard C-arm fluoroscopy with computer aided surgical technology, radiation exposure can be eliminated and four different planes can be visualized simultaneously. This study presents data of preliminary clinical experience using this new technology.

Material and methods: The Stealth Station Treatment Guidance Platform System by Medtronic was used. The calibration target was attached to a C-arm fluoroscope. The static reference arc which was attached to the patient and various surgical tools. All with affixed light emitting diodes (LEDs) which were seen by the Infra Red camera. After a short registration process in which the relevant anatomy images were acquired, the C-arm was withdrawn and the entry point to the operated anatomy was determined using the navigation capabilities of the system.

During a period of six months, 31 patients underwent different surgical procedures in which a guided wire was used for: percutaneous fixation of unstable pelvis and hip fractures (13 patients), inserting and locking of an intrameduallry nail (12 patients), inserting pedicular screws (2 patients), or removing foreign-bodies or internal fixations (4 patients). In all cases the placement of the hardware was approved by conventional fluoroscopy as well.

Results: Excellent correlation between the virtual fluoroscopic imaging and live fluoroscopy was observed, thus the placement of the wire in all cases was satisfactory and there was no need to change the position of the wire following the live fluoroscopic confirmation. The number of fluoroscopic buttoning was smaller than the average number in similar surgery using conventional fluoroscopy.

Discussion: According to our preliminary clinical experience it seems that virtual fluoroscopy offers several advantages over conventional fluoroscopy while providing acceptable targeting accuracy. Our impression is that its saves fluoroscopic radiation exposure and improves exactness of the procedure. However, since currently only one reference arc can be detected at a time by the guidance system it can be used only in a stable anatomical situations (such as non-displaced fractures or pedicular screw placements). The use of better-oriented surgical instrumentation and more than one reference point detection will significantly improve the clinical potential of this method.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 305 - 305
1 Nov 2002
Ben-David D Mosheiff R Beyth S Suraki O Liebergall M
Full Access

Introduction: Fluoroscopy is routinely used for real-time intra-operative localization of patient anatomy and surgical instrument positioning. Using this radiographic information the orthopedic surgeon inserts different implants into bone. Despite its utility, however, fluoroscopy does have disadvantages. The most notable is potential occupational radiation exposure. Conventional fluoroscopy usually provides only one plane at a time, whereas at least two planes are needed for optimal placement of an implant. By combining a standard C-arm fluoroscopy with computer aided surgical technology, radiation exposure can be eliminated and four different planes can be visualized simultaneously. This study presents data of preliminary clinical experience using this new technology.

Material and methods: The Stealth Station Treatment Guidance Platform System by Medtronic was used. The calibration target was attached to a C-arm fluoroscope. The static reference arc which was attached to the patient and various surgical tools. All with affixed light emitting diodes (LEDs) which were seen by the Infra Red camera. After a short registration process in which the relevant anatomy images were acquired, the C-arm was withdrawn and the entry point to the operated anatomy was determined using the navigation capabilities of the system.

During a period of six months, 31 patients underwent different surgical procedures in which a guided wire was used for: percutaneous fixation of unstable pelvis and hip fractures (13 patients), inserting and locking of an intrameduallry nail (12 patients), inserting pedicular screws (2 patients), or removing foreign-bodies or internal fixations (4 patients). In all cases the placement of the hardware was approved by conventional fluoroscopy as well.

Results: Excellent correlation between the virtual fluoroscopic imaging and live fluoroscopy was observed, thus the placement of the wire in all cases was satisfactory and there was no need to change the position of the wire following the live fluoroscopic confirmation. The number of fluoroscopic buttoning was smaller than the average number in similar surgery using conventional fluoroscopy.

Discussion: According to our preliminary clinical experience it seems that virtual fluoroscopy offers several advantages over conventional fluoroscopy while providing acceptable targeting accuracy. Our impression is that its saves fluoroscopic radiation exposure and improves exactness of the procedure. However, since currently only one reference arc can be detected at a time by the guidance system it can be used only in a stable anatomical situations (such as non-displaced fractures or pedicular screw placements). The use of better-oriented surgical instrumentation and more than one reference point detection will significantly improve the clinical potential of this method.