header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 2 - 2
1 May 2016
Affatato S Jaber S Paola T
Full Access

Introduction

Wear and survival of total joint replacements do not depend on the duration of the implant in situ, but rather on the amount of its use, i.e. the patient's activity level [1]. With this in mind, the present study was driven by two questions: (1) How does total knee replacement (TKR) respond to the simulation of daily highly demanding activities? (2) How does implant size affect wear response of total knee replacement (TKR)?

Materials & Methods

Two sets of the same total knee prosthesis (TKP), different in size (#2 and #6), equal in design, were tested on a three-plus-one knee joint simulator for two million cycles using a highly demanding daily load waveform [2], replicating a stair-climbing movement. The results were compared with two sets of TKP previously tested with the ISO level walking task. Gravimetric and micro-Raman spectroscopic analyses were carried out on the polyethylene inserts. Visual comparison with in vivo explants was carried out and digital microscopy was used to characterize the superficial structure of all the TKPs and explanted components.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 3 - 3
1 May 2016
Affatato S Jaber S Belvedere C Leardini A
Full Access

Introduction

Total knee arthroplasty (TKA) is a consolidated orthopaedic procedure and success of such operation depends on the prosthetic design [1]. Unfortunately, as there is a good survival rate of primary TKA, failures occur for factors concerning the polyethylene composition of the implants, secondary osteolysis, and ultimately loosening of the implants are the usual causes of failure after normal use [2]. Dynamic in vitro testing of the human knee continues to be an area of interest to the orthopaedic biomechanics community. The scope of this work was to assess pre-clinically the wear behaviour of polyethylene knee insert under a realistic stair climbing activity using a displacement knee simulator.

Materials & Methods

Four commercial posterior-stabilized fixed-bearing component prosthesis for TKA were tested in this study (Stryker®-Orthopaedics, Mahwah, NJ-USA). These were new and delivered in sterilized packages. Particularly, corresponding UHMWPE tibial inserts (size #7) were made of conventional surgical grade polyethylene resin (GURâ�¨1020), consolidated by compression moulding (accordingly to ISO 5834/1-2), and EtO sterilized. These were tested in conjunction with corresponding CoCrMo alloy femoral components.

For the implementation of realistic loading scenarios during in vitro wear testing for human joint prostheses, an in vitro protocol was designed to simulate the flexion/extension angle, intra/extra rotation angle, and antero/posterior translation. These movements were obtained in patients by three- dimensional video-fluoroscopy. Axial load data were collected by gait analysis [3].


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 2 - 2
1 Jan 2016
Giardina F Castiello E Affatato S Battaglia S
Full Access

Introduction

In Total Knee Arthroplasty (TKA) a proper choice of the implant size is mandatory in order to guarantee the success of the prosthesis, although the tribological behavior TKA is strongly influenced by the implant design.

Retrieval analysis of failed total knee prosthesis is essential to investigate the wear mechanism leading to osteolysis and loosening of the implant. Assessments from retrieval studies constitute crucial information in the effort to improve prosthesis functionality and reduce the risk of revision. The aim of the present study was to investigate the correlation among different implant sizes of retrieved TKA and patients' variables such as Body Mass Index (BMI) in terms of surface modifications and morphology change, in order to examine prosthesis properties and performances. In particular, this study can improve the understanding of the tribological behavior of total knee prosthesis and it can help the surgeon to select the best implant size of TKA considering patient's variables.

Methods

Twelve retrieved total knee prostheses of the same design but with different sizes were investigated. These prostheses were all cemented, fixed and posterior stabilized. These prostheses were explanted from 12 patients after a mean of 3.2 years (from 1.1 to 7.4 years). These patients had undergone a primary TKA at our hospital between 2005 and 2010; there were 10 women and 2 men with a mean age of 68 years (ranging from 48 to 77 years) at implantation. A qualitative assessment of wear patterns and surface damages was performed on femoral components and polyethylene inserts. Roughness analyses were obtained on femoral components to assess surface modifications. Surface roughness of the metallic femoral components was performed with a contact rugosimeter. Following an internal protocol, thirty measurements were acquired from each condyle. Two roughness parameters were take into account: Ra (the Mean Roughness, i.e. the arithmetical mean value of the deviations of the roughness profile about the centre line) and Rsk. (i.e. the skewness, indicates the prevalence of peaks or valleys and quantifies the asymmetry of the profile variation from the mean line). Prostheses time in-vivo and patient details were known.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 37 - 42
1 Jan 2012
Affatato S Traina F De Fine M Carmignato S Toni A

Alumina–alumina bearings are among the most resistant to wear in total hip replacement. Examination of their surfaces is one way of comparing damage caused by wear of hip joints simulated in vitro to that seen in explanted bearings. The aim of this study was to determine whether second-generation ceramic bearings exhibited a better pattern of wear than those reported in the literature for first-generation bearings. We considered both macro- and microscopic findings.

We found that long-term alumina wear in association with a loose acetabular component could be categorised into three groups. Of 20 specimens, four had ‘low wear’, eight ‘crescent wear’ and eight ‘severe wear’, which was characterised by a change in the physical shape of the bearing and a loss of volume. This suggests that the wear in alumina–alumina bearings in association with a loose acetabular component may be variable in pattern, and may explain, in part, why the wear of a ceramic head in vivo may be greater than that seen after in vitro testing.