header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 72 - 72
1 Feb 2020
Hall D Garrigues G Blanchard K Shewman E Nicholson G Pourzal R
Full Access

Introduction

The combined incidence of anatomic (aTSA) and reverse total shoulder arthroplasties (rTSA) in the US is 90,000 per annum and rising. There has been little attention given to potential long-term complications due to periprosthetic tissue reactions to implant debris. The shoulder has been felt to be relatively immune to these complications due to lower acting loads compared to other joint arthroplasties. In this study, retrieved aTSAs and rTSAs were examined to determine the extent of implant damage and to characterize the nature of the corresponding periprosthetic tissue responses.

Methods

TSA components and periprosthetic tissues were retrieved from 23 (eleven aTSA, twelve rTSA). Damage to the implants was characterized using light microscopy. Head/stem taper junction damage was graded 1–4 as minimal, mild, moderate or marked. Damage on polyethylene (PE) and metal bearing surfaces was graded 1–3 (mild, moderate, marked). H&E stained sections of periprosthetic soft tissues were evaluated for the extent and type of cellular response. A semi-quantitative system was used to score (1=rare to 4=marked) the overall number of particle-laden macrophages, foreign body giant cells, lymphocytes, plasma cells, eosinophils, and neutrophils. Implant damage and histopathological patterns were compared between the two TSA groups using the Mann-Whitney and Spearman tests.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 51 - 51
1 Oct 2019
Suppauksorn S Beck EC Cancienne JM Shewman E Chahla J Krivich LM Nho SJ
Full Access

Purpose

To determine the differences of biomechanical properties in three conditions including 1) native cam deformity 2) cam deformity with incomplete resection and 3) cam deformity with complete resection.

Methods

A cadaveric study was performed using 8 frozen, hemi-pelvises with cam-type deformity (alpha angle >55°) measured on CT scan and an intact labrum. Intraarticular pressure maps were produced for each specimen under the following conditions: 1) native cam deformity, 2) cam deformity with incomplete resection and 3) cam deformity with complete resection. A 5.5-mm burr was used to resect the lateral portion of the cam deformity to a depth of 3–4 mm. The specimen was placed in a custom designed jig in the MTS electromechanical test system to create pressure and area map measurements. In each condition, three biomechanical parameters were obtained including contact pressure, contact area and peak force within a region-of-interest (ROI). Repeated measurements were performed for three times in each condition and the average value of each parameter was used for statistical analysis. ANOVA was used to compare biomechanical parameters between three conditions.