header advert
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 69 - 69
17 Apr 2023
Day G Jones A Mengoni M Wilcox R
Full Access

Autologous osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage, taken from a non-loadbearing region of the knee. Despite positive clinical use, factors that cause graft subsidence or poor integration are relatively unknown. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint and to investigate parameters affecting osteochondral graft stability.

Initial experimental tests on cadaveric femurs were performed to calibrate the bone properties and graft-bone frictional forces for use in corresponding FE models, generated from µCT scan data. The effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using in vitro tests on a single cadaveric human tibiofemoral joint. Six defects were created in the femoral condyles which were subsequently treated with osteochondral autografts or metal pins. Matching µCT scan-based FE models were created, and the contact patches were compared. Sensitivity to graft bone properties was investigated.

The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC=0.87). The tibiofemoral joint experiment provided a range of cases to model. These cases were well captured experimentally and represented accurately in the FE models. Graft properties relative to host bone had large effects on immediate graft stability despite limited changes to resultant cartilage contact pressure.

Model confidence was built through extensive validation and sensitivity testing, and demonstrated that specimen-specific properties were required to accurately represent graft behaviour. The results indicate that graft bone properties affect the immediate stability, which is important for the selection of allografts and design of future synthetic grafts.

Acknowledgements

Supported by the EPSRC-EP/P001076.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 59 - 59
17 Apr 2023
Pounds G Liu A Jones A Jennings L
Full Access

The aim of this work was to develop a novel, accessible and low-cost method, which is sufficient to measure changes in meniscal position in a whole-knee joint model performing dynamic motion in a knee simulator.

An optical tracking method using motion markers, MATLAB (MATLAB, The MathWorks Inc.) and a miniature camera system (Raspberry Pi, UK) was developed. Method feasibility was assessed on porcine whole joint knee samples (n = 4) dissected and cemented to be used in the simulator (1). Markers were placed on three regions (medial, posterior, anterior) of the medial meniscus with corresponding reference markers on the tibial plateau, so the relative meniscal position could be calculated. The Leeds high kinematics gait profile scaled to the parameters of a pig (1, 2) was driven in displacement control at 0.5 Hz. Videos were recorded at cycle-3 and cycle-50. Conditions tested were the capsule retained (intact), capsule removed and a medial posterior root tear. Mean relative displacement values were taken at time-points relating to the peaks of the axial force and flexion-extension gait inputs, as well as the range between the maximum and minimum values. A one-way ANOVA followed by Tukey post hoc analysis were used to assess differences (p = 0.05).

The method was able to measure relative meniscal displacement for all three meniscal regions. The medial region showed the greatest difference between the conditions. A significant increase (p < 0.05) for the root tear condition was found at 0.28s and 0.90s (axial load peaks) during cycle-3. Mean relative displacement for the root tear condition decreased by 0.29 mm between cycle-3 and cycle-50 at the 0.28s time-point. No statistically significant differences were found when ranges were compared at cycle-3 and cycle-50.

The method was sensitive to measure a substantial difference in medial-lateral relative displacement between an intact and a torn state. Meniscus extrusion was detected for the root tear condition throughout test duration. Further work will progress onto human specimens and apply an intervention condition.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 35 - 35
17 Apr 2023
Afzal T Jones A Williams S
Full Access

Cam-type femoroacetabular impingement is caused by bone excess on the femoral neck abutting the acetabular rim. This can cause cartilage and labral damage due to increased contact pressure as the cam moves into the acetabulum. However, the damage mechanism and the influence of individual mechanical factors (such as sliding distance) are poorly understood. The aim of this study was to identify the cam sliding distance during impingement for different activities in the hip joint.

Motion data for 12 different motion activities from 18 subjects, were applied to a hip shape model (selected as most likely to cause damage, anteriorly positioned with a maximum alpha angle of 80°). The model comprised of a pointwise representation of the acetabular rim and points on the femoral head and neck where the shape deviated from a sphere (software:Matlab).

The movement of each femoral point was tracked in 3D while an activity motion was applied, and impingement recorded when overlap between a cam point and the acetabular rim occurred. Sliding distance was recorded during impingement for each relevant femoral point.

Angular sliding distances varied for different activities. The highest mean (±SD) sliding distance was for leg-crossing (42.62±17.96mm) and lowest the trailing hip in golf swing (2.17±1.11mm). The high standard deviation in the leg crossing sliding distances, indicates subjects may perform this activity in a different manner.

This study quantified sliding distance during cam impingement for different activities. This is an important parameter for determining how much the hip moves during activities that may cause damage and will provide information for future experimental studies.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 57 - 57
11 Apr 2023
Etchels L Wang L Thompson J Wilcox R Jones A
Full Access

Variations in component positioning of total hip replacements can lead to edge loading of the liner, and potentially affect device longevity. These effects are evaluated using ISO 14242:4 edge loading test results in a dynamic system. Mediolateral translation of one of the components during testing is caused by a compressed spring, and therefore the kinematics will depend on the spring stiffness and damping coefficient, and the mass of the translating component and fixture. This study aims to describe the sensitivity of the liner plastic strain to these variables, to better understand how tests using different simulator designs might produce different amounts of liner rim deformation.

A dynamic explicit deformable finite element model with 36mm Pinnacle metal-on-polyethylene bearing geometry (DePuy Synthes, Leeds, UK) was used with material properties for conventional UHMWPE. Setup was 65° clinical inclination, 4mm mismatch, 70N swing phase load, and 100N/mm spring. Fixture mass was varied from 0.5-5kg, spring damping coefficient was varied from 0-2Ns/mm. They were changed independently, and in combination.

Maximum separation values were relatively insensitive to changes in the mass, damping coefficient, or both. The sensitivity of peak plastic strain, to this range of inputs, was similar to changing the swing phase load from 70N to approximately 150N – 200N. Increasing the fixture mass and/or damping coefficient increased the peak plastic strain, with values from 0.15-0.19.

Liner plastic deformation was sensitive to the spring damping and fixture mass, which may explain some of the differences in fatigue and deformation results in UHMWPE liners tested on different machines or with modified fixtures. These values should be described when reporting the results of ISO14242:4 testing.

Acknowledgements

Funded by EPSRC grant EP/N02480X/1; CAD supplied by DePuy Synthes.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 42 - 42
1 Mar 2021
Williams S Jones A Wilcox R Isaac G Traynor A Board T Williams S
Full Access

Abstract

Objectives

Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement.

Methods

A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 38 - 38
1 Mar 2021
Vasiljeva K Lunn D Chapman G Redmond A Wang L Thompson J Williams S Wilcox R Jones A
Full Access

Abstract

Objectives

The importance of cup position on the performance of total hip replacements (THR) has been demonstrated in in vitro hip simulator tests and clinically. However, how cup position changes during gait has not been considered and may affect failure scenarios. The aim of this study was to assess dynamic cup version using gait data.

Methods

Pelvic movement data for walking for 39 unilateral THR patients was acquired (Leeds Biomedical Research Centre). Patient's elected walking speed was used to group patients into high- and low-functioning (mean speed, 1.36(SD 0.09)ms−1 and 0.85(SD 0.08)ms−1 respectively). A computational algorithm (Python3.7) was developed to calculate cup version during gait cycle. Inputs were pelvic angles and initial cup orientation (assumed to be 45° inclination and 7° version, anterior pelvic plane was parallel to radiological frontal plane). Outputs were cup version angles during a gait cycle (101 measurements/cycle). Minimum, maximum and average cup version during gait cycle were measured for each patient. Two-sample t-test (p=0.05) was used to compare groups.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 29 - 29
1 Jan 2019
Yao J Mengoni M Williams S Jones A
Full Access

Acetabular tissue damage is implicated in osteoarthritis (OA) and investigation of in situ acetabular soft tissues behaviour will improve understanding of tissue properties and interconnections. The study aim was to visualise acetabular soft tissues under load and to quantify displacements using computed tomography (CT) scans (XtremeCT, Scano Medical).

A CT scan (resolution 82 μm) was performed on the disarticulated, unloaded porcine acetabulum. The femoral head was soaked in Sodium Iodide (NaI) solution and cling film wrapped to prevent transfer to the acetabular side. The joint was realigned, compressed using cable ties and re-scanned. The two images were down-sampled to 0.3 mm. Acetabular bone and soft tissues were segmented. Bony features were used to register the two background images, using Simpleware ScanIP 7.0 (Synopsys), to the same position and orientation (volume difference < 5%). Acetabular soft tissues displacements were measured by tracking the same points at the tissue edges on the two acetabular masks, along with difference in bone position as an additional error assessment.

The use of radiopaque solution provided a clear contrast allowing separation of the femoral and acetabular soft tissues in the loaded image. The image registration process resulted in a difference in bone position in the areas of interest equivalent to image resolution (0.3 mm, a mean of 3 repeats by same user). A labral tip displacement of 1.7 mm and a cartilage thickness change from 1.5 mm unloaded to 0.9 mm loaded, were recorded.

The combination of contrast enhancement, registration and focused local measurement was precise enough to reduce bone alignment error to that of image resolution and reveal local soft tissue displacements. These measurement methods can be used to develop models of soft tissues properties and behaviour, and therapy for hip tissue damage at early stage may be reviewed and optimised.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 23 - 23
1 May 2017
Jordan R Jones A Malik S
Full Access

Introduction

The stability of the elbow joint following an acute elbow dislocation is dependent on associated injuries. The ability to identify these concomitant injuries correctly directs management and improves the chances of a successful outcome. Interpretation of plain radiographs in the presence of either a dislocation or post-reduction films with plaster in-situ is difficult. This study aimed to assess the ability of orthopaedic registrars to accurately identify associated bony injuries on initial plain radiographs using CT as the gold standard for comparison.

Methods

Patients over the age of 16 years undergoing an elbow CT scan within one week of a documented elbow dislocation between 1st June 2010 and 1st June 2014 were included in the study. Three orthopaedic registrars independently reviewed both the initial dislocation and immediate post reduction plain radiographs to identify any associated bony injuries. This radiograph review was repeated by each registrar after two weeks. The incidence of associated injuries as well as the inter- and intra-observer variability was calculated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 117 - 117
1 Aug 2012
Aarvold A Smith J Tayton E Jones A Dawson J Briscoe A Lanham S Dunlop D Oreffo R
Full Access

Background

Skeletal stem cells can be combined with human allograft, and impacted to produce a mechanically stable living bone composite. This strategy has been used for the treatment of femoral head avascular necrosis, and has been translated to four patients, of which three remain asymptomatic at up to three year follow-up. In one patient collapse occurred in both hips due to widely distributed and advanced AVN disease, necessitating bilateral hip arthroplasty. However this has provided the opportunity to retrieve the femoral heads and analyse human tissue engineered bone.

Aims

Analysis of retrieved human tissue-engineered bone in conjunction with clinical follow-up of this translational case series.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 7 - 7
1 Aug 2012
Smith J Dawson J Aarvold A Jones A Ridgway J Curran S Dunlop D Oreffo R
Full Access

Recent approaches have sought to harness the potential of stem cells to regenerate bone lost as a consequence of trauma or disease. Bone marrow aspirate (BMA) provides an autologous source of skeletal stem cells (SSCs) for such applications, however previous studies have demonstrated that the concentration of SSCs present in iliac crest BMA is below that required for robust bone regeneration. Here we present a novel acoustic-facilitated filtration strategy to concentrate BMA for SSCs, clinically applicable for intra-operative orthopaedic use.

The aim of this study was to demonstrate the efficacy of this strategy in concentrating SSCs from iliac crest bone marrow, as well as femoral canal BMA from older patients.

Iliac crest BMA (Lonza, Rockville, MD, USA) and femoral canal BMA was obtained with informed consent from older patients during total hip replacement. 5 to 40ml of BMA was processed via the acoustically-aided exclusion filtration process to obtain 2-8 fold volume reductions. SSC concentration and function was assessed by flow-cytometry, assays for fibroblastic colony-forming units (CFU-F) and multi-lineage differentiation along chondrogenic, osteogenic and adipogenic pathways examined. Seeding efficiency of enriched and unprocessed BMA (normalised to cell number) onto allograft was assessed.

Iliac crest BMA from 15 patients was enriched for SSCs in a processing time of only 15 minutes. Femoral BMA from 15 patients in the elderly cohort was concentrated up to 5-fold with a corresponding enrichment of viable and functional SSCs, confirmed by flow cytometry and assays for CFU-F. Enhanced osteogenic (P<0.05) and chondrogenic (P<0.001) differentiation was observed using concentrated aspirate, as evidenced by biochemical assay and semi-quantitative histological analysis. Furthermore, enhanced cell seeding efficiency onto allograft was seen as an effect of SSC concentration per ml of aspirate (P<0.001), confirming the utility of this approach for application to bone regeneration.

The ability to rapidly enrich BMA demonstrates potential for intra-operative application to enhance bone healing and offers immediate capacity for clinical application to treat many scenarios associated with local bone stock loss. Further in vivo analysis is ongoing prior to clinical tests.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 74 - 74
1 Aug 2012
Mak J Moazen M Jones A Jin Z Tsirdis E Wilcox R
Full Access

Periprosthetic femoral fractures can occur as a complication of total hip arthroplasty and are often challenging to treat as the mechanical scenario is influenced by the presence of the metal prosthesis within the bone. This research focuses on finding the optimum fixation for transverse, Vancouver type B1 periprosthetic fractures, stabilised using locking plates and secured using screws. The aim of this study was to experimentally validate a computer model of a human femur, develop that model to represent a periprosthetic femoral fracture fixation and show how the model could be used to indicate differences between plating techniques.

In the first development stage, both a laboratory model and a finite element model were developed to evaluate the mechanical behaviour of an intact composite femur under axial loading. Axial strains were recorded along the medial length of the femur in both cases and compared to provide validation for the computational model predications. The computational intact femur model was then modified to include a cemented total hip replacement, and further adapted to include a periprosthetic fracture stabilised using a locking plate, with unicortical screws above, and bicortical screws below the transverse fracture.

For the intact femur case, the experimental and computational strain patterns correlated well with an average difference of 16%. Following the inclusion of the stem, there was a reduction in the strain in the region of the prosthesis reducing by an average of 45%. There was also a large increase in bulk stiffness with the introduction of the prosthesis. When the fracture and plate fixation were included, there was little difference in the proximal strain where the stem dominated, and the strains in the distal region were found to be highly sensitive to the distribution of the screws.

The results of this study indicate that screw configuration is an important factor in periprosthetic fracture fixation. A laboratory model of the periprosthetic facture case is now under development to further validate the computational models and the two approaches will then be used to determine optimum fixation methods for a range of clinical scenarios.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 26 - 26
1 May 2012
Jones A Aarvold A New A Dunlop D Oreffo R
Full Access

AIM

Avascular necrosis (AVN) of the femoral head is a potentially debilitating disease of the hip in young adults. Impaction bone grafting (IBG) of morcellised fresh frozen allograft is used in a number of orthopaedic conditions. This study has examined the potential of skeletal stem cells (SSC) to augment the mechanical properties of impacted bone graft and we translate these findings into clinical practice.

STUDY DESIGN

We have examined the effect of SSC density on augmentation of bone formation. An in vitro model was developed to replicate the surgical IBG process. Plain allograft was used as the control, and the SSC's seeded at a density of 5×103, 5×104 and 2×105 cells per cc of allograft for the experimental groups. All samples were cultured for 2 weeks and mechanically tested to determine shear strength using the Mohr Coulomb failure curve. The approach was translated to 3 patients with early avascular necrosis (AVN) of the femoral head. The patient's bone marrow was concentrated in theatre using a centrifugation device and the concentrated fraction of SSC's were seeded onto milled allograft. The patient's necrotic bone was drilled, curetted and replaced with impacted allograft seeded with SSC's. Osteogenic potential of concentrated and unconcentrated marrow was simultaneously compared in vitro by colony forming unit assays.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 82 - 82
1 May 2012
Jones A Hing K
Full Access

Background, Context and Motivation

“Increases in reconstructive orthopaedic surgery, resulting from advances in surgical practice and the ageing population, have lead to a demand for bone graft that far exceeds supply.”…Traditional bone grafting methods have been linked with a number of negative issues including increased morbidity due to secondary operation site and action as a vector for spread of disease. (Hing 2004). A solution to these insufficiencies would be the creation of a synthetic osteoinductive bone graft material. This would vastly improve bone graft surgery success rates and expedite post-op recovery times. The aim of this study was to classify then explore the dissolution rates of three experimental hydroxyapatite/silicate apatite synthetic bonegrafts in physiological solutions, (phosphate buffered saline, (PBS) +/− serum proteins, (PBS +FCS). The overall objective being to identify whether there is an explainable significant difference in ion exchange that could be behind the osteoinductive phenomena.

Methods Used

Classification of the apatite samples, (HA, SA1 and SA2), was conducted via X-Ray diffraction, FTIR-PAS Spectroscopy and SEM with EDS analysis. A dissolution experiment of the experimental apatites was conducted in PBS and PBS + FCS solutions, over time periods of 1, 2 and 4 hours, and at 1, 2, 4 and 8 days, with repeat measures.