header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 88 - 88
1 May 2017
Vergroesen P van der Veen A Emanuel K van Dieën J Smit T
Full Access

Daytime spinal loading is twice as long as night time rest, but diurnal disc height changes due to fluid flow are balanced. A direction-dependent permeability of the endplates, favouring inflow over outflow, has been proposed to explain this; however, fluid also flows through the annulus fibrosus. This study investigates the poro-elastic behaviour of entire intervertebral discs in the context of diurnal fluid flow.

Caprine discs were preloaded in saline for 24 hours under different levels of static load. Under sustained load, we modulated the disc's swelling pressure by replacing saline for demi-water and back again to saline, both for 24h intervals. We measured the disc height creep and used stretched exponential models to determine the respective time constants.

Reduction of culture medium osmolality induced an increase in disc height, and the subsequent restoration induced a decrease in disc height. Creep varied with the mechanical load applied. No direction-dependent resistance to fluid flow was observed. In addition, time constants for mechanical preloading were much shorter than for osmotic loading, suggesting that outflow is faster than inflow. However, a time constant does not describe the actual rate of fluid flow: close to equilibrium fluid flow is slower than far from equilibrium. As time constants for mechanical loading are shorter and daytime loading twice as long, the system is closer to the loading equilibrium than to the unloading equilibrium. Therefore, paradoxically, fluid inflow is faster during the night than fluid outflow during the day.