header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 7 - 7
1 Feb 2017
Al-Dirini R Huff D O'Rourke D Taylor M
Full Access

Introduction

Pre-clinical testing of orthopaedic devices could be improved by comparing performance with established implants with known clinical histories. Corail and Summit (DePuy Synthes, Warsaw) are femoral stems with proven survivorship of 95.1% and 98.1% at 10 years [1], which makes them good candidates as benchmarks when evaluating new stem designs. Hence, the aim of this study was to establish benchmark data relating to the primary stability of Corail and Summit stems.

Methods

Finite Element (FE) simulations were run for 34 femurs (from the Melbourne femur collection) for a diverse patient cohort of joint replacement age (50 – 80 yrs). To account for the diversity in shape, the cohort included femurs with the maxima, minima and medians for 26 geometric parameters. Subject-specific FE models were generated from CT scans. An in-house developed algorithm positioned idealized versions of Corail and Summit (Figure 1) into each of the femur models so that the stem and femur shaft axes were aligned, and the vertical offset between the trunnion centre and the femoral head centre was minimised. For such a position, the algorithm selected the size that achieved maximum fill of the medullary canal without breaching the cortical bone boundaries.

Joint contact and muscle forces were calculated for level gait and stair climbing[2] and scaled to the body mass of each subject. Femurs were rigidly constrained at the condyles. Risk of failure was assessed based on (i) stem micromotion, (ii) equivalent strains (iii) percentage of the bone-prosthesis contact area experiencing micromotions < 50 μm, micromotions > 150 μm and strains > 7000 μstrains [3].


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 12 - 12
1 May 2016
Al-Dirini R Taylor M O'Rourke D Huff D
Full Access

Introduction

Primary stability is essential for long-term performance of cementless femoral components. There is debate as to whether collars contribute to primary stability. The results from experimental studies and finite element (FE) analysis have been variable and contradictory. Subtle differences in performance are often swamped by variation between cadaveric specimens in vitro, whereas FE studies tend to be performed on a single femur. However, FE studies have the potential to make comparisons of implant designs within the same cohort of femurs, allowing for subtle performance differences to be identified if present. This study investigates the effect of a collar on primary stability of a femoral prosthesis across a representative cohort of femurs.

Materials and Methods

FE models were generated from QCT scans of eight cadaveric femurs taken from the Melbourne Femur Collection (4 male and 4 female; BMI: 18.7 – 36.8 kg.m-2; age: 59 – 80 years) which were of joint replacement age. Heterogeneous bone material properties were assigned based on the CT greyscale information. Each femur was implanted with the collared and collarless version of Corail femoral stem (DePuy, Leeds, United Kingdom). The stems were sized and positioned so that the prosthesis filled the medullary canal with minimal gap between the prosthesis and the inner boundary of the cortical bone. The peak muscle and joint contact forces associated with level gait were applied and the distal femur was rigidly fixed. The forces were scaled based on the body weight for each subject. Micromotion, as well as microstrains at the bone-prosthesis interface were measured for each subject. Paired t-test was run to compare the micromotion and the microstrains measured for the collared and collarless prosthesis.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 133 - 133
1 Jul 2014
O'Kane C Vrancken A O'Rourke D Janssen D Ploegmakers M Buma P Fitzpatrick D Verdonschot N
Full Access

Summary

Our statistical shape analysis showed that size is the primary geometrical variation factor in the medial meniscus. Shape variations are primarily focused in the posterior horn, suggesting that these variations could influence cartilage contact pressures.

Introduction

Variations in meniscal geometry are known to influence stresses and strains inside the meniscus and the articulating cartilage surfaces. This geometry-dependent functioning emphasizes that understanding the natural variation in meniscus geometry is essential for a correct selection of allograft menisci and even more crucial for the definition of different sizes for synthetic meniscal implants. Moreover, the design of such implants requires a description of 3D meniscus geometry. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size or shape driven.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 145 - 145
1 Sep 2012
Green C O'Rourke D Courtis P Fitzpatrick D Kelly P
Full Access

The management of the dysplastic hip represents a clinical and a technical challenge to the paediatric orthopaedic surgeon. There is a great deal of variation in the degree and direction of acetabular dysplasia. Preoperative planning in the dysplastic hip is still largely based on plain radiographs. However, these plain films are a 2D projection of a 3D structure and measurement is prone to inaccuracy as a result. Hip arthrography is used in an attempt to analyse the 3D morphology of the hip. However, this still employs a 2D projection of a 3D structure and in addition has the risk of general anaesthesia and infection. Geometrical analysis based on multiplanar imaging with CT scans has been shown to reduce analysis variability. We present a system for morphological analysis and preoperative of the paediatric hip using this model. Our system can be used to determine the most appropriate osteotomy based on morphology. This system should increase the accuracy of preoperative planning and reduce the need for arthrography.