header advert
Results 61 - 75 of 75
Results per page:
Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 285 - 285
1 Jul 2008
JENNY J MIEHLKE RK GIUREA A
Full Access

Purpose of the study: Navigation systems have proven efficacy for implantation of total knee arthroplasty (TKA). Navigations have been accused of being complex, requiring a long learning curve. We compared the results obtained with the same navigation system in centers with experienced operators and centers with new operators.

Material and methods: Thirteen European centers participated in this prospective consecutive study. Inclusion criteria was indication for a TKA using a gliding prostheis with preservation of the posterior cruciate ligament. Four experienced cents(group A) with a mean experience of four years, and nine new centers (group B) with no prior experience participated in the study. The study concerned 403 TKA (182 in group A and 221 in group B). The main indications were primarily lateralized osteoarthritis. The navigation system was an imageless system based on intaoperative kinematic anatomic and kinematic analysis. A mobile plateau prosthesis was inserted. The following items were compared between the two groups: overall operative time and its variation over time, postoperative HKA, orientation of the femoral and tibial components in the ap and lateral views, complications and revisions.

Results: No significant difference was observed between the two groups for the preoperative items so comparison between the groups was licit. Correction of the frontal mechanical axis was satisfactory in 90% of patients in group A and 88% in group B (p> 0.05). There was no difference between the groups in quality of implantation for each prosthetic element on the ap and lateral views. There was no difference for rate of complications or reoperations. Longer operative time in group B disappeared after 15 implantations.

Discussion: The results from centers using navigation systems for prosthetic implantations shows that the performance in centers starting use is the same as in experienced centers. The only difference is an operative time slightly longer for the first 15 cases.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 169 - 169
1 Mar 2008
JENNY J BOERI C
Full Access

Introduction: The accuracy of implantation is an accepted prognostic factor for the long term survival of a unicompartmental knee prosthesis (UKP). Minimal invasive technique is recommended for faster post-operative recovery. We developed an adaptation of a non image based system for either conventional or minimal invasive UKP implantation. We hypothesized that the used non image based navigation system will allow to place a UKP in the same position for both conventional and minimal-invasive approach.

Methods: 20 patients were operated on with this experimental minimal invasive navigated technique (group A) and compared to a group of 20 cases operated with the conventional navigated technique (group B), matched to the study group according to age, gender andseverity of the coronal deformation. Coronal mechanical femorotibial angle and coronal and sagittal orientation of the components were measured on post-operative antero-posterior and lateral long leg X-rays. The rate of satisfactory implanted prostheses was compared in both groups with a Chi-square test with a 0.05 limit of significance.

There was no significant difference in the pre-operative data between both groups. The post-operative coronal group A and 17 cases in group B. The prosthesis was optimally implanted in 17 cases in group A and 18 cases in group B. No difference was statistically significant.

Discussion-Conclusion: The used navigation system allowed a very precise implantation of a UKP for both conventional and minimal invasive navigated technique.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 136 - 136
1 Apr 2005
Jenny J Boéri C
Full Access

Purpose: Implantation quality is an important prognostic factor for long-term outcome of unicompartmental knee prostheses. Minimally invasive techniques allow more rapid rehabilitation but at the price of potentially diminished implantation quality. Navigation systems have been developed to overcome this problem.

Material and methods: We analysed a preliminary series of 20 patients (group A) whose unicompartmental medial femorotibial prosthesis (Search(r), Aesculap, Tuttlingen, Germany) was implanted with the CT-free Orthopilot(r) system (Aesculap, Tuttlingen, Germany). This system uses intra-operative kinematic and anatomic analysis to define the mechanical axes of the femur and tibia in space. The femoral and tibial cut lines are aligned on these axes. This series was compared with a retrospective historical series (group B) of 60 knees with the same prostheses implanted with the same navigation system but with a conventional approach requiring patellofemoral subluxation. Implantation quality was measured using the following angles: AP mechanical femorotibial angle, orientation of the tibial and femoral prostheses (AP and lateral), vertical level of the prosthetic joint space in relation to the preserved joint space.

Results: The AP mechanical femorotibial angle was in the desired range in 16 knees in group A (80%) and in 48 in group B (80%). The femoral component exhibited optimal position in 18 knees in group A (90%) and in 54 in group B (90%). The tibial component exhibited optimal position in 17 knees in group A (85%) and in 53 in group B (88%). Thirteen prostheses in group A (65%) and 37 in group B (62%) were implanted optimally using the studied criteria. The length of the incision varied from 7 to 10 cm in group A. There was no significant difference.

Discussion: This navigation system allows very precise implantation of the medial unicompartmental knee prosthesis, both with the conventional technique and the minimally invasive technique. Use of the minimally invasive technique does not decrease the radiographic quality of the implantation in comparison with the conventional navigation technique. This technique could become the gold standard for implantation of unicompartmental knee prostheses.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 98 - 98
1 Apr 2005
Jenny J Piriou P Lortat-Jacob A Vielpeau C
Full Access

Purpose: We reviewed retrospectively 349 cases of infected total hip arthroplasty treated by prosthesis replacement. The surgical strategy, 127 single-stage procedures and 222 two-stage procedures, was determined by the surgeon on a case by case basis.

Material and methods: At least one positive sample during the clinical history was required for inclusion in the series. Results of all bacteriological samples collected pre- and intra-operatively were noted. Samples were considered reliable if obtained from a deep site (puncture, biopsy, intraoperative specimen) and non-reliable if obtained from any other site. We studied the agreement between preoperative and intraoperative samples, taking the intraoperative samples as the reference, in order to determine the effect of complete preoperative knowledge of the causal germ on the outcome of infection treatment at last follow-up.

Results: For single-stage replacement procedures, preoperative samples were reliable in 74 cases (58%) and non reliable in seven (6%); they were sterile or absent in 46 cases (36%). Intra-operative samples were positive in 103 cases (81%). Agreement between the preoperative and intraoperative samples was observed in 48 cases (38%). The rate of success was not different if the surgeon had or did not have reliable knowledge of the causal germ(s) preoperatively: successful treatment in 66 cases (89%) with knowledge and successful in 46 cases (87%) without knowledge. For two-stage procedures, preoperative samples were reliable in 155 cases (70%) and non-reliable in 15 (7%); they were sterile or absent in 52 cases (23%). Intraoperative samples were positive in 178 cases (80%). Agreement between preoperative and intraoperative samples was observed in 107 cases (48%). The rate of success was not different if the surgeon had or did not have reliable knowledge of the causal germ(s) preoperatively: successful treatment in 133 cases (86%) with knowledge and successful treatment in 56 cases (84%) without knowledge.

Conclusion: Reliable preoperative knowledge of the causal germ(s) did not affect the rate of success for single-stage or two-stage total hip arthroplasty replacement procedures. These findings do not corroborate the notion that it is absolutely necessary to recognise the germ(s) causing the infection before undertaking a single-stage replacement procedure.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 227 - 227
1 Mar 2004
Miehlke R Kohler S Kiefer H Jenny J Konermann W Clemens U
Full Access

Background: The aim of introduction of navigation in knee arthroplasty was to further contribute to precision of endoprosthetic alignment.

Methods and material: A multicentre comparative study was conducted including 821 patients. The SEARCH knee system was used throughout the series. 555 TKA’s were implanted with the use of a navigation system (OrthoPilot) and 266 cases were operated using manual instrumentation. Alignment was radiographically evaluated at the three months follow-up with respect to mechanical axis and femoral and tibial axes using one-leg stance x-rays and standardized lateral radiographs.

Results: The summarized results of the series are shown in the table below. The chi-square test was applied for the statistical analysis.

Conclusions: Endoprosthetic alignment using the navigation system was superior to manual implantation technique on the average with respect to all parameters. Results were more consistent on the tibial side. The navigation system proved to be reliable. The overall results justify the further use and development of navigation tools in knee arthroplasty.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 54 - 54
1 Jan 2004
Jenny J Boéri C
Full Access

Purpose: The design of the contact surfaces of total knee prostheses is a recognised factor affecting polyethylene wear and thus prosthesis survival. Flat-on-flat prostheses have a limited surface area of contact and are thought to favour polyethylene wear. They are not currently recommended for implantation. Nevertheless, several series have reported similar survival with other more congruent prostheses. We studied a series followed for eight years.

Material and methods: We implanted 223 flat-on-flat design total knee prostheses between 1992 and 1996 (Search®, Aesculap, Chaumont). All patients were followed prospectively and seen at regular intervals for physical examination and x-rays. We noted any intervention for implant revision and recorded time to any such procedures as well as the underlying cause. Kaplan-Meier survival curves were plotted taking revision for any cause other than infection as the endpoint.

Results: Ninety-four percent of the patients were reexamined or questioned by phone for this study conducted during 2001. Six percent of the patients were lost to follow-up after a mean 24 months. Seventy-four percent of the prostheses were still in situ at the time of this study at a mean 78 months follow-up. Ten percent of the patients died with their initial implant in place at a mean 50 months. Ten percent of the patients underwent revision surgery at a mean 37 months, half of them for infection and one quarter for a mechanical cause. The overall rate of revision at eight years was 11%; The rate of revision, infection excluded, at eight years was 6%.

Discussion: Survival of this prosthesis in non-infected patients is similar to that of other more congruent implants. This study confirms earlier clinical findings.The undesirable effect of the linear contact surfaces is proven in the laboratory but must not be considered to be automatically transferable to the clinical level. Polyethylene wear is a multifactorial phenomenon which cannot be reduced to a simple question of prosthesis design.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 32 - 33
1 Jan 2004
Boeri G Jenny J Dosch J Dupuis M Moussaoui A Mairot F
Full Access

Purpose: According to the Ottawa rules, x-rays are not needed after knee trauma unless one or more of the following clinical criteria are present: age over 55 years, pain at palpation of the head of the fibula, pain at palpation of the anterior aspect of the patella, impossible knee flexion beyond 90°, inability to walk four steps immediately after trauma and at the emergency consultation. We conducted a prospective study in a consecutive series of patients to check the validity of this rule in daily practice.

Materials and methods: From December 2001 to January 2002, we included all patients consulting in an emergency situation for recent trauma involving only the knee joint. We excluded patients aged less than ten years, wounds without trauma, trauma more than two days before consultation, and patients with a history of trauma involving the same knee. An emergency physical exam was performed in all cases with identification of the study criteria. Standard x-rays (AP and lateral view in the supine position) were obtained for all patients. The patients and the x-rays were seen later by a senior orthopaedic surgeon and a senior radiologist who noted the presence of fracture requiring specific therapeutic management. The sensitivity, specificity and positive and negative predictive values of the Ottawa rule were determined for search for fracture.

Results: One hundred thirty-eight patients met the inclusion criteria during the study period. The sensitivity and negative predictive value of the Ottawa rule were 100%; the specificity was 36%, and the positive predictive value was 25%. Nineteen fractures (14%) requiring specific therapeutic management were identified: all patients had at least one positive sign. Seventy-six patients (55%) without fracture had at least one positive sign. Forty-three patients (31%) without fracture did not have any positive sign. The x-rays were not contributive for these patients.

Discussion and conclusion: This study demonstrated the validity of the Ottawa rule in the clinical setting of our practice. With widespread use of this rule, approximately one-third of the x-rays performed for recent trauma involving the knee alone could be avoided.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 31 - 31
1 Jan 2004
Boeri C Ballonzoli L Jenny J
Full Access

Purpose: Knowledge of the radiological axes in the normal lower limb is important for correction and reconstruction surgery. Classically, the femorotibial mechanical axis presents a zero angle on the anteroposterior view, with 3° femoral valgus being compensated by an equivalent tibial varus. Reference data have however been established with questionable methodology because they have been obtained with small selected samples.

Material and methods: We obtained teleradiograms of the lower limbs in 100 healthy volunteers free of any disease of the lower limbs and selected randomly among patients undergoing surgery for trauma or degenerative lesions of the upper limb. The following angles were measured by the same senior surgeon: mechanical femorotibial angle, orientation of the femoral condylar complex in relation to the mechanical axis of the femur, angle between the mechanial axis and the anatomic axis of the femur, orientation of the tibial plateaux in relation to the mechanical axis of the tibia.

Results: Sixty-nine men and 31 woman, mean age 39 years (range 17 – 62 years) participated in this study. The mean mechanical femorotibial angle was 179° (SD 3°, median 179°, range 168°–185°). The mean orientation of the femoral condylar complex in relation to the femoral mechanical axis was 91° (SD 2°, median 91°, range 86°–98°); 17 subjects had the classical value of 93°. The mean angle between the mechanical and anatomic axis of the femur was 6° (SD 1°, median 6°, range 3°–9°); 29 subjects had the classical value of 7°. The mean orientation of the tibial plateaux in relation to the mechanical axis of the tibia was 88° (SD 2°, median 88°, range 82°–84°); 14 subjects had the classical value of 87°.

Discussion and conclusion: The values considered to be normal in the literature only included 15–20% of the subjects in this study. Although there could be a theoretical selection bias in this series, it can be assumed that there is a wide dispersion of “normal” values around the means. The pertinence of this dispersion in clinical practice remains to be established. The question of individualising reconstruction or prosthetic procedures is raised.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 54 - 54
1 Jan 2004
Miehlke R Jenny J
Full Access

Purpose: The purpose of this study was to conduct a multicentric comparison of total knee arthroplasty using the conventional technique versus digitalized navigation.

Material and methods: A prospective comparative study was conducted in five centres in 821 patients using the same implant (Search®, Aesculap, Chaumont): 555 procedures with the Orthopilot® navigation system (Aesculap, tutligen, group 1) and 266 conventional procedures, group 2). Radiographic results were analysed by an independent investigator who examined telemetric images obtained three months after surgery.

Results: The mechanical femorotibial axis was within desired limits (3° frontal deformation) in 88.6% of the knees in group 1 and in 72.2% of the knees in group 2 (p< 0.001). The rate of unacceptable implantations (> 5° deviation) was 2.5% in group 1 and 9.8% in group 2).

Frontal orientation of the femoral component was satisfactory in 89.4% of the knees in group 1 and in 77.1% in group 2. Sagittal orientation of the femoral component was satisfactory in 75.5% of the knees in group 1 and in 70.7% of the knees in group 2. Frontal orientation of the tibial component was satisfactory in 91.9% of the knees in group 1 and in 83.5% of the knees in group 2. The sagittal orientation of the tibial piece was satisfactory in 81.3% of the knees in group 1 and in 69.9% of the knees in group 2. Optimal implantation, considering all criteria studied, was achieved in 275 patients (49.5%) in group 1 and in 82 patients (30.8%) in group 2 (p< à.001). Ther was no difference in results between centres.

Discussion: Computer-assisted navigation facilitated prosthesis implantation with the desired orientation in comparison with manual instrumentation. The number of unacceptable implantations was significantly lower. After a short learning curve, the reliability of this system has proven very satisfactory, facilitating its use since this study.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 84 - 85
1 Jan 2003
Miehlke RK Kiefer H Kohler S Jenny J Konermann W
Full Access

INTRODUCTION

Nowadays, longevity of total knee arthroplasties is very acceptable. Survivorship analyses demonstrate a success in a range of 80% to more than 95% over a period of more than ten years (1–4). However, long-term results largely depend, amongst other factors, on restoration of physiological alignment of the lower limb (5–11). Jeffery et al. (12) reported a three percent loosening rate over eight years when knees were correctly aligned whereas insufficient alignment lead to prosthetic loosening in 24 percent. Rand and Coventry (13) found a 90 percent survivorship rate at ten years when the mechanical axis was aligned in a range from nought to four degrees of valgus. Valgus position of more than four degrees or varus alignment resulted in only 71 percent and 73 percent of survivorship respectively.

Recently, computer aided instrumentation systems (14,15) became available and preliminary results of small series were reported (16–17).

The purpose of this study was to assess the accuracy of computer integrated instrumentation for knee alignment.

MATERIAL AND METHOD

The OrthoPilot® represents a computer controlled image supported alignment system. A 3-D Optotrak™ camera localizes infra-red diodes fixed to rigid bodies within the surgical field. Thereby a spatial coordinate reference system is provided. The localizer is linked to a UNIX work station which performs the operative protocol using a graphical interface and a foot pedal. The rigid bodies are fixed to the bones by bicortical screws. An intraoperative kinematic analysis and various additional landmarks lead to definition of the centres of hip, ankle and knee joint and sizing of endoprosthetic components. With the use of LED-equipped alignment instruments the femoral and tibial resection planes are determined.

The OrthoPilot® navigation system is not dependant on CT data and no additional preoperative planning is therefore necessary.

A prospective comparative multicentre study in five institutions, four in Germany and one in France, was carried out. 821 patients with primary tricompartimental knee arthroplasty using the SEARCH LC knee (B|Braun AESCULAP) were included in the study. The OrthoPilot® Navigation system was used in 555 cases and 266 knees were implanted with the use of conventional instrumentation. At the three months follow-up alignment was assessed using standardized one leg stance radiographs with regard to the mechanical axis and the femoral and tibial angels in the coronal plane. For the lateral femoral and tibial angels standard lateral x-rays were used. Prosthetic alignment was verified by an independent observer.

RESULTS

The radiographically assessed results were subdivided into three groups. An error of ± one degree in the radiographical measurements and small deviations caused by the play of surgical instruments have to be considered. With respect to the femoral and tibial angels in the ap and lateral view the group of very good clinical results was, therefore, defined in the range between ninty degrees and ± two degrees. Deviations of three and four degrees from the optimum were classified as being clinically acceptable. Aberrations of more than four degrees were classified as outliers. When measuring the mechanical axis deviations from fully precise femoral and tibial angels may add up. For this reason zero degrees ± three degrees were rated as a very good result, deviations of four to five degrees were considered to be acceptable and alignment beyond five degrees from the optimum was classified as an unsatisfactory result.

Mechanical axis:

35. 2% of the navigated cases were aligned at exactly zero degrees. This was achieved in only 24. 4% of the manual cases. 88. 6% of cases using navigation and 72. 2% in the manual group showed zero degrees and varus or valgus angles of up to three degrees. 8. 9% and 18. 1% of cases respectively showed deviations of four or five degrees of valgus or varus alignment representing an acceptable clinical result. In only 2. 5% of the navigation group aberrations of more than five degrees occurred. The rate of dissatisfying results was 9. 8% in the manual group.

Femoral axis (coronal plane):

In the navigation group 48. 1% of cases showed an alignment at exactly 90 degrees which was the case in only 33. 5% of the control group. Altogether, in 89. 4% of the navigated cases a very good result was observed. In the conventionally instrumented cases only 77. 1% very good results were found. There were 1. 6% outliers beyond the limits of four degrees in the navigation group in comparison to 4. 9% amongst the control cases.

Femoral axis (sagittal plane):

Very good results with up to two degrees of deviation from a ninety degree position were obtained in 75. 5% of navigated cases and 70. 7% of manual cases. 37. 3% and 34. 6% respectively showed an ideal alignment of exactly ninety degrees. Unsatisfactory results were observed in 9. 5% of the navigated cases and 9. 4% of the manual cases.

Tibial axis (coronal plane):

58. 7% of the computer assisted and 40. 6% of the reference cases were exactly aligned at rectangles. All in all, in 91. 9% navigated and only 83. 5% manual cases a very good result was obtained. Only 1. 1% outliers had to be observed in the navigation group whereas 3. 4% unsatisfactory results were registered with manual technique.

Tibial axis (sagittal plane):

44. 3% of the navigated cases and only 26. 7% of cases in the control group were aligned perpendicular to the dorsal tibial cortex, thus showing no posterior slope. Altogether, 81. 3% could be classified as very good clinical results in the computer assisted group. The corresponding rate of the manual group was 69. 9%. Equivalent values of 8. 6% in the navigation group and 8. 3% in the reference group were registered beyond the limits of four degrees deviation.

The additional operation time for the use of the navigation system is calculated between eight and ten minutes after having passed through the learning curve.

CONCLUSIONS

Knee navigation facilitates proper alignment of endoprosthetic components and with the use of the Ortho-Pilot® system results are clearly more favourable in comparison to conventional instrumentation technique. In addition, the data obtained from literature demonstrate that the use of this navigation system contributes to reducing outliers in number. With the learning curve the OrthoPilot® alignment system proved to gain in reliability.

Deviations from perfect alignment are still difficult to be classified into surgical or technical deficiencies.

Many technical and software improvements which were introduced in the meantime will, in addition, contribute to reliability and time saving.

Comparative studies with different navigation systems are not yet available. They might allow an even more profound insight into the possibilities and advantages or disadvantages of computer assisted knee alignment.

LITERATURE

(1) Knutson K, Lindstrand A, Lidgren L. Survival of knee arthroplasties, a nation-wide multicenter investigation of 8000 cases. J Bone Joint Surg. 1986; 68B: 795-803

(2) Scuderi GR, Insall JN, Windsor RE, Moran MC. Survivorship of cemented knee replacement. J Bone Joint Surg. 1989; 798-409

(3) Nafei A, Kristensen O, Knudson HM, Hvid I, Jensen J. Survivorship analysis of cemented total condylar knee arthoplasty. J Arthoplasty 11, 1996;07-10

(4) Ranawat CS, Flynn WF, Saddler S, Hansraj KH, Maynhard MJ. Long-term results of total condylar knee arthroplasty. A 15-years survivorship study. Clin Orthop 1993; 286:94-102

(5) Lotke PA, Ecker ML. Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg 1977;59-A:77-79

(6) Hood RW, Vanni M, Insall JN. The correction of knee alignment in 225 consecutive total condylar knee replacements. Clin Orthop 1981;160:94-105

(7) Bargren JH, Blaha JD, Freeman MAR. Alignment in total knee arthroplasty. Clin Orthop 1983;173:178-183.

(8) Hvid I, Nielsen S. Total condylar knee arthroplasty. Acta Orthop Scand 1984;55:160-165

(9) Tew M, Waugh W. Tibial-femoral alignment and the results of knee replacement. J Bone Joint Surg 1985;67-B:551-556

(10) Jonsson B, Astrom J. Alignment and long-term clinical results of a semi-constrained knee prosthesis. Clin Orthop 1988;226:124-128

(11) Ritter MA, Faris PM, Keating EM, Meding JB. Postoperative alignment of total knee replacement its effect on survival. Clin Orthop 1994;299:153-156

(12) Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg 1991;73-B:709-714

(13) Rand JA, Coventry MB. Ten-year evaluation of geometric total knee arthroplasty. 1988;232:168-173

(14) Leitner F, Picard F, Minfelde R, Schulz HJ, Clinquin P, Saragaglia D. Computer assisted knee surgical total replacement. In: CVRMed-MRCAS. Troccaz J, Grimson E, Mösges R (Eds). 1997; 630-638, Springer

(15) Delp SL, Stulberg SD, Davies BL, Picard F, Leitner F. Computer assisted knee replacement. Clin Orthop 1998; 354:49-56

(16) Picard F, Saragaglia D, Montbarbon E, Chaussard C, Leitner F, Raoult O. Computer assisted knee arthroplasty - preliminary clinical results with the Ortho-Pilot System. Abstract, 4th International CAOS Symposium, Davos, Switzerland, 1999

(17) Miehlke RK, Clemens U, Jens J-H, Kershally S. Navigation in der Knieendoprothetik - vorläufige klinische Erfahrungen und prospektiv vergleichende Studie gegenüber konventioneller Implantationstechnik, Z Orthop 2001; 139: 109-116


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 55
1 Mar 2002
Brinkert D Gaudias J Boeri C Jenny J
Full Access

Purpose: Treatment of infection in patients with an unstable bone is based on removal of implants, bone resection, reconstruction, and external fixation. We report a retrospective series of 11 patients who developed post-traumatic osteitis of the tibia on an unstable bone who were treated by removal of all implants, cleaning, antibiotics, and internal fixation using a centromedullary locked nail.

Material and methods: The series included seven men and four women, mean age 32.4 years (16–56). Initially, there were two closed fractures and nine open fractures (Gustilo II: 4, IIIA: 1; IIIB: 4) treated by external fixation in six cases, centromedullary locked nailing in four and plate fixation in one. Bacteriology results were available for all deep surgical samples. The initial implants were removed in all cases, followed by debridement sparing soft tissue, and reaming of the bone. Adapted antibiotics were prolonged for three months. Refixation using a centromedullary locked nail was performed at the first revision time in two cases and later after cleaning in nine (mean delay 28 days, range 2–53 days). Two cases required a flap for cover.

Results: There were two failures: one due to recurrent infection with a different germ, the other due to necrosis of a latissimus dorsi flap followed by amputation. There were nine successes with bone healing in all cases (first intention in eight and after complementary bone graft in one) and no recurrent infection at the current mean follow-up of 2.6 years.

Discussion: These eleven cases have a common feature of no extensive bone necrosis or major bone defect. Bone resection was basically related to reaming with a minimalistic approach for soft tissue debridement. Reliable bacteriological examinations, effective antibiotic therapy, and prolonged and rapid skin cover are essential elements for success.

Conclusion: This experience is limited but does demonstrate that locked centromedullary nailing can be successful for the treatment of long bone infections on unstable bones, considering that this could be the ideal fixation method.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages 55 - 55
1 Mar 2002
Boeri C Gaudia J Jenny J
Full Access

Purpose: Centromedullary nailing with reaming is a recognised treatment for open leg fractures with a well-measured risk of postoperative infection. The development nailing procedures without reaming might reduce this risk.

Material and methods: We performed a Medline search using the following key words: nailing, tibia, open fracture, infection. To be retained for analysis, articles had to evaluate infectious risk of nailing with or without reaming, in clinical trials or experimental studies, with precise diagnostic criteria. Clinical articles retained were classed in three categories by decreasing value of their methodology: prospective randomised comparative studies, case-control studies, comparative observation studies, simple observation studies. Only comparative experimental and prospective comparative randomised studies were considered to be pertinent.

Results: Five articles met the predefined quality inclusion criteria and were retained for analysis: three experimental studies and two clinical trials. The experimental studies by Melcher (1995 and 1996) demonstrated a significant increase in infection rate and bacterial counts after nailing with reaming; there were two confounding factors however, steel or titanium nail and full or hollow nail which also had a significant effect on the rate of infection. The experimental work by Curtis (1995) did not find any difference in incidence and severity of infection between nailings with and without reaming. The two prospective comparative randomised clinical trials by Keating (1007) and Finkemeier (2000) included a total of 132 cases. the risk of infection was 8% after nailing with reaming and 7% after nailing without reaming (NS). The relative risk of infection after nailing with reaming was 1.02-fol greater than that without reaming (NS).

Discussion, conclusion: There is experimental evidence that would tend to prove that the risk of infection is lower after nailing with reaming, but it is insufficient to explain the mechanism of this lower rate. Inversely, although the clinical observation series tend to confirm these results, the two methodologically valid prospective comparative randomised studies did not find any difference. To date, there is no objective evidence ruling out the usefulness of nailing with reaming because of higher infection risk in open leg fractures.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 42
1 Mar 2002
Jenny J Kehr P
Full Access

Purpose: The quality of implantation of single-compartment knee prostheses is a recognised prognostic factor. Acceptable reproducibility can be achieved with traditional instrumentations, although the rate of error can be significant. Computer-assisted implantation might improve results. Most of the currently proposed techniques require supplementary preoperative imaging or implantation of metallic material for guidance. The Orthopilot® system is a purely peroperative system and could thus provide better cost-effectiveness.

Material and methods: We implanted 30 single-compartment knee prostheses using the Orthopilot® computerised system (Aesculap, Chaumont, Group A) and compared the radiographic quality of the implant on telemetric AP and lateral views with those from a control group of 30 single-compartment prostheses implanted with a traditional instrumentation with a femoral centromedullary aiming device (group B). All patients underwent surgery for primary degeneration and were operated on by the same surgeon using the same implant (Search®, Aesculap, Chaumont). The control group was selected among a consecutive series of 250 implants to match the study group for age, gender, importance of the degeneration and frontal femorotibial mechanical angle.

Results: The mechanical femorotibial angle was within desired limits (177±3°) in 26 patients in group A and in 20 patients in group B. Frontal orientation of the femoral component was within desired limits (90±2°) in 27 patients in group A and in 19 in group B (p< 0.05). Frontal orientation of the tibial piece was within desired limits (90±2°) in 27 patients in group A and in 19 patients in group B (p < 0.02). The original level of the joint line was reconstructed with a 2 mm margin in 30 patients in group A and in 24 patients in group B (p < 0.05). Eighteen patients in group A and four patients in group B had optimal implantation for all criteria studied (p < 0.001). There were no system-related complications.

Discussion, conclusion: Computer-assisted implantation is more reliable and more reproducible than traditional instrumentation for the implantation of a single-compartment knee prosthesis. Follow-up results with these prostheses may be better. Systematic preoperative imaging, or preoperative implantation of metallic guide pins is not necessary with this system. The system appears to offer a better cost-effectiveness.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 37
1 Mar 2002
Boeri C Jenny J Kehr P
Full Access

Purpose: The biepicondylar axis of the femur is considered by many authors as a reliable reference axis for flexion-extension of the knee and to establish desirable orientation of the femoral component of a total knee arthroplasty. We studied the reproducibility of axis measurments made using an automatic digital acquisition system (OrthoPilot®, Aesculap, Chaumont, France). The system localises anatomic points in space from information obtained with a palpation probe carrying an infrared diode.

Material and methods: A consecutive series of 20 total knee arthroplasties (Search®, Aesculap, Chaumont, France) implanted by two senior surgeons on the same surgical team were studied. The mechanical axis of the femur was calculated prior to the study using kinematic acquisition of the position of the centres of rotation of the hip and the knee. The frontal reference plane was then defined from the most posterior point on the femoral condyles palpated with the probe as the plane containing the mechanical axis of the femur and parallel to the posterior bicondylar line. The apex of the two femoral epicondyles was obtained by direct palpation with the probe. A second plane passing through the apex of the epicondyles and parallel to the mechanical axis of the femur was thus defined. Three acquisitions were made for the same patient by each of the two surgeons without changing the posterior bicondylar reference plane. The angle between the frontal plane of reference and the biepicondylar plane was calculated directly by the software for each acquisition. The variability of the three measurements taken by each operator and between the two operators was studied with the Wilcoxon test for paired series and with Spearman’s coefficient of correlation.

Results: Mean intraobserver variability for the orientation of the biepicondylar axis was 4° for the two operators, with a maximum of 11° for the first operator and 9° for the second, the directions being random. The mean interobserver variability for this orientation was 4° with a maximum of 14°, again at random. All differences were statistically significant.

Discussion, conclusion: Measurements of the biepicondylar axis exhibit high intra- and interobserver variability, probably due to the anatomic conditions; the apex of the epicondyles is a blunt surface difficult to identify with precision. Use of this axis to determine the rotation of the femoral component of a total knee arthroplasty is thus an element of wide variability with measurement inaccuracy of a mean ± 5° but with a maximum that can reach 10°. The question remains to determine whether this uncertainty is tolerable or whether more precision is required.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 745 - 745
1 Jul 1999
JENNY J