header advert
Results 21 - 22 of 22
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 9 - 9
1 May 2013
Schmalzried T
Full Access

First, we need to define “contemporary UHMWPE”. Then we can discuss whether or not this is “the ultimate bearing partner”. The essential criterion for contemporary UHMWPE is intentional crosslinking. There are a number of such acetabular bearing products in the worldwide marketplace. They can differ in several ways including the base resin, the method of consolidation, the method of crosslinking, remelting v. annealing, the packaging and method of sterilisation, and the incorporation of any antioxidant. Thus “contemporary UHMWPE” is not one material, but a family of materials that may have some practical (clinical) differences. There is one essential similarity: substantially reduced wear and osteolysis compared to UHMWPE that is not intentionally crosslinked.

In one literature review, Kurtz et al. reported a weighted-average femoral head penetration rate (wear) for crosslinked acetabular bearings of 0.042 mm/year based on 28 studies (n = 1,503 hips) and 0.137 mm/year for non-crosslinked bearing based on 18 studies (n = 695 hips). The pooled odds ratio for the risk of osteolysis in crosslinked versus conventional liners was 0.13 (95% CI, 0.06–0.27) among studies with minimum 5-year follow-up. Reduction in femoral head penetration or osteolysis risk was not established for large-diameter (>32 mm) femoral heads. In another minimum 5 year follow-up study, Lachiewicz et al. reported that there was no hip with pelvic or femoral osteolysis. They found no association between femoral head size and the linear wear rate, but observed an association between larger (36- and 40-mm) head size with higher volumetric wear rate and higher total volumetric wear.

Leung et al. compared wear, osteolysis incidence, location, and volume on CT scans between 40 hips with non-crosslinked UHMWPE and 36 hips with crosslinked UHMWPE, at a minimum of 5 years. The incidence of osteolysis was statistically greater for patients with non-crosslinked UHMWPE (11/40, 28%) compared to patients with crosslinked UHMWPE (3/36, 8%; P = 0.04). The average lesion volume for hips with non-crosslinked liners (7.5 ± 6.7 cm3) was significantly greater than the average lesion volume for hips implanted with crosslinked liners (1.2 ± 0.1 cm3, P = 0.01).

Bragdon et al. combined a single-centre and two multicentre studies to include 768 primary patients (head size 26–36 mm) with a minimum of 7 years follow-up. Serial plain radiographs showed no osteolysis. The average femoral head penetration rates did not correlate with time in vivo for patients with standard femoral head sizes. There was an indication of higher wear in patients with 36-mm diameter bearings; it was below the threshold for producing osteolysis.

Battenberg et al. quantified the activity of 14 healthy patients with a well-functioning THA at two time periods: early (within 3.5 years of implantation) and late (10–13 postoperative years). Wear was measured on serial radiographs using edge detection-based software. Mean activity decreased by 16% from the early to the late period. Mean gait speed decreased by 9%. Gait speed was 26% slower for patients ≥65 years than for patients <65 years. The mean linear penetration rate decreased by 42% from the first 5 years (early wear rate) to the next 8 years (late wear rate, 5–13 years): 0.043 mm/year to 0.025 mm/year. The greatest patient activity and wear occur during the first 5 years. Walking speed and gait cycles both decreased with aging, resulting in deceasing wear and risk of osteolysis over time.

Crosslinked UHMWPE has consistently demonstrated decreased wear and osteolysis with up to 13 years follow-up. Volumetric wear is increased with larger diameter bearings but appears to be below the osteolysis threshold for most hips, especially considering that patient activity decreases with their aging.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 35 - 35
1 May 2013
Schmalzried T
Full Access

The elements of my routine pre-op. planning include skin and scar assessment, the limb length (physical exam and radiographic assessments), the socket type, the stem type, and radiographic templating. Blood management is rarely an issue for primary total hips today and I generally do not recommend pre-operative autologous donation. I currently use a low molecular weight heparin for venous thromboembolic prophylaxis for most all patients. All of my patients have pre-operative medical clearance from a hospital intensivist.

A press-fit modular cementless socket is my “workhorse,” although I occasionally use supplemental fixation with spikes (low bone density) or screws (shallow or otherwise deficient hemisphere). Cemented fixation is reserved for hips with radiation necrosis. I use a dual-offset tapered cementless stem in most cases but will use a modular stem in dysplastic, post-traumatic, or severely osteoporotic femurs.

I template every case. My goals are to determine component sizes - “the part inside the bone” and improve the biomechanics of the hip – “the part outside the bone”. Sizing is relatively straight forward. For the socket, I use the teardrop and the superior bony edge as landmarks for size and position. I use a Johnson's lateral view radiograph to assess socket version and anterior osteophytes. With a tapered stem, proximal fit on the AP radiograph is the goal and the stem does not need to be canal filling. For the neck resection, I reference off the lesser trochanter.

Medialisation of the hip centre of rotation (COR) decreases the moment arm for body weight; increasing the femoral off-set lengthens the lever arm for the abductor muscles. These changes in hip biomechanics have a double benefit: a reduction in required abductor forces and lower joint reaction forces. There is accumulating clinical evidence that such favourable alterations in biomechanics can improve clinical outcomes and reduce wear. Higher femoral off-set has been associated with greater hip abduction motion and abductor muscle strength. In two independent studies, higher femoral off-set has been associated with a significant reduction in polyethylene wear.

The traditional arthroplasty goal has been to re-create the off-set of the operated hip. In an analysis of 41 patients with one arthritic hip and one clinically and radiographically normal hip (Rolfe et al., 2006 ORS), we found that the horizontal femoral off-set of the arthritic hip was, on average, 6 mm less than that of the normal, contralateral hip. Considering this, and with medialisation of the COR, is it reasonable to make the femoral off-set a few millimeters greater than that pre-op. With modular trial components, final off-set and limb-length adjustments are made intra-operatively by assessing soft tissue tension, joint stability and range of motion.

Applying these principles in a consecutive series of 40 hips, the hip centre of rotation was medialised by 5.6 mm and the horizontal femoral off-set was increased by an average of 9.5 mm, being larger than the normal, contralateral hip by an average of 5.2 mm. This combination increased the net biomechanical advantage of the diseased hip to an average of 12.5% more than the normal, contralateral hip. The increase in femoral off-set is compensated for by medialising the COR. The average lateralisation of the proximal femur of 3.9 mm did not cause trochanteric bursitis or other pain. When the offset is right, soft tissue tension can be maintained without over-lengthening. In this series, 2.9 mm average lengthening resulted in the reconstructed limb being an average of 1.1 mm shorter than the normal side.