header advert
Results 21 - 40 of 83
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 52 - 52
1 Dec 2021
Wang J Hall T Musbahi O Jones G van Arkel R
Full Access

Abstract

Objectives

Knee alignment affects both the development and surgical treatment of knee osteoarthritis. Automating femorotibial angle (FTA) and hip-knee-ankle angle (HKA) measurement from radiographs could improve reliability and save time. Further, if the gold-standard HKA from full-limb radiographs could be accurately predicted from knee-only radiographs then the need for more expensive equipment and radiation exposure could be reduced. The aim of this research is to assess if deep learning methods can predict FTA and HKA angle from posteroanterior (PA) knee radiographs.

Methods

Convolutional neural networks with densely connected final layers were trained to analyse PA knee radiographs from the Osteoarthritis Initiative (OAI) database with corresponding angle measurements. The FTA dataset with 6149 radiographs and HKA dataset with 2351 radiographs were split into training, validation and test datasets in a 70:15:15 ratio. Separate models were learnt for the prediction of FTA and HKA, which were trained using mean squared error as a loss function. Heat maps were used to identify the anatomical features within each image that most contributed to the predicted angles.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 42 - 42
1 Mar 2021
Williams S Jones A Wilcox R Isaac G Traynor A Board T Williams S
Full Access

Abstract

Objectives

Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement.

Methods

A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 33 - 33
1 Mar 2021
Koria L Farndon M Lavalette D Jones E Mengoni M Brockett C
Full Access

Abstract

Objectives

Over 1% of the global population suffers with ankle osteoarthritis (OA), yet there is limited knowledge on the changes to subchondral bone with OA. In other joints, it has been shown that bone becomes osteosclerotic, with fewer, thicker trabeculae that become hypomineralised, causing an increased apparent bone volume fraction (BV/TV). Microstructural alterations reduce overall joint strength, which may impact the success of late-stage surgical interventions, such as total ankle arthroplasty (TAA). Previous ankle studies have evaluated changes to cartilage, bone plate and bone morphology with OA, hence this study aimed to characterise changes to trabecular architecture.

Methods

Three ankle joints were isolated from non-diseased cadaveric feet (three males: 43, 50 and 57 years, MEEC 18-027). Cylindrical subchondral bone specimens (N=6, 6.5 mm Ø) were extracted from the tibial plafond. Osteoarthritic bone samples (N=6, distal tibia) were sourced from local patients (three males: 65, 58 and 68 years, NREC 07/Q1205/27) undergoing TAA surgery. Specimens were imaged using µCT at a 16 µm isotropic resolution (µCT-100 ScanCo Medical). Virtual cores of bone (6.5 mm Ø) were extracted from the image data of the osteoarthritic specimens and trimmed to a height of 4 mm. BoneJ was used to evaluate key morphological indices: BV/TV; anisotropy (DA); trabecular thickness (Tb.Th); trabecular density (Conn.D) and ellipsoid factor (EF) which characterises rod/plate geometry. Differences between the two groups of specimens were evaluated using a t-test with Bonferroni correction.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 38 - 38
1 Mar 2021
Vasiljeva K Lunn D Chapman G Redmond A Wang L Thompson J Williams S Wilcox R Jones A
Full Access

Abstract

Objectives

The importance of cup position on the performance of total hip replacements (THR) has been demonstrated in in vitro hip simulator tests and clinically. However, how cup position changes during gait has not been considered and may affect failure scenarios. The aim of this study was to assess dynamic cup version using gait data.

Methods

Pelvic movement data for walking for 39 unilateral THR patients was acquired (Leeds Biomedical Research Centre). Patient's elected walking speed was used to group patients into high- and low-functioning (mean speed, 1.36(SD 0.09)ms−1 and 0.85(SD 0.08)ms−1 respectively). A computational algorithm (Python3.7) was developed to calculate cup version during gait cycle. Inputs were pelvic angles and initial cup orientation (assumed to be 45° inclination and 7° version, anterior pelvic plane was parallel to radiological frontal plane). Outputs were cup version angles during a gait cycle (101 measurements/cycle). Minimum, maximum and average cup version during gait cycle were measured for each patient. Two-sample t-test (p=0.05) was used to compare groups.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 86 - 86
1 Mar 2021
Bommireddy L Granville E Davies-Jones G Gogna R Clark DI
Full Access

Abstract

Objectives

Clavicle fractures are common, yet debate exists regarding which patients would benefit from conservative versus operative management. Traditionally shortening greater than 2cm has been accepted as an indicator for surgery. However, clavicle length varies between individuals. In a cadaveric study clavicle shortening greater than 15% was suggested to affect outcomes. There is no clinical correlation of this in the literature. In this study we investigate outcomes following middle third clavicle fractures and the effect of percentage shortening on union rates.

Methods

We identified a consecutive series of adults with primary midshaft clavicle fractures presenting to our institution from April 2015-March 2017. Clinical records and radiographs were reviewed to elicit outcomes. Time to union was measured against factors including; percentage shortening, displacement, comminution and smoking. Statistical significance was calculated.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 7 - 7
1 Mar 2021
Gilbert S Bonnet C Jones R Mason D
Full Access

Abstract

Objectives

The mechanisms underlying abnormal joint mechanics are poorly understood despite it being a major risk factor for developing osteoarthritis. This study investigated the response of a 3D in vitro bone cell model to mechanical load.

Methods

Human MSC cells (Y201) embedded in 3D type I collagen gels were differentiated in osteogenic media for 7-days in deformable, silicone plates. Gels were loaded once (5000 µstrain, 10Hz, 3000 cycles), RNA extracted 1-hr post load and assessed by RT-qPCR and RNAseq analysis (n=5/treatment). Cell shape and phenotype were assessed by immunocytochemistry and phalloidin staining. Data was analysed by Minitab.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 22 - 22
1 Jan 2019
Fermor H Herbert A Jones G Fisher J Ingham E
Full Access

Decellularised extracellular matrix scaffolds show great promise for the regeneration of damaged musculoskeletal tissues (cartilage, ligament, meniscus), however, adequate fixation into the joint remains a challenge. Here, we assess the osseo-integration of decellularised porcine bone in a sheep model. This proof-of-concept study supports the overall objective to create composite decellularised tissue scaffolds with bony attachment sites to enable superior fixation and regeneration.

Porcine trabecular bone plugs (6mm diameter, 10mm long) were decellularised using a novel bioprocess incorporating low-concentration sodium dodecyl sulphate with protease inhibitors. Decellularised bone scaffolds (n=6) and ovine allograft controls (n=6) were implanted into the condyle of skeletally mature sheep for 4 and 12 weeks. New bone growth was visualised by oxytetracycline fluorescence and standard resin semi-quantitative histopathology.

Scaffolds were found to be fully decellularised and maintained the native microarchitecture. Following 4-week implantation in sheep, both scaffold and allograft appeared well integrated. The trabecular spaces of the scaffold were filled with a fibro-mesenchymal infiltrate, but some areas showed a marked focal lymphocytic response, associated with reduced bone deposition. A lesser lymphocytic response was observed in the allograft control. After 12-weeks the lymphocytic reaction was minimised in the scaffold and absent in allografts. The scaffold showed a higher density of new mineralized bone deposition compared to allograft. New marrow had formed in both the scaffold and allografts.

Following the demonstration of osteointegration this bioprocess can now be transferred to develop decellularised composite musculoskeletal tissue scaffolds and decellularised bone scaffolds for clinical regeneration of musculoskeletal tissues.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 29 - 29
1 Jan 2019
Yao J Mengoni M Williams S Jones A
Full Access

Acetabular tissue damage is implicated in osteoarthritis (OA) and investigation of in situ acetabular soft tissues behaviour will improve understanding of tissue properties and interconnections. The study aim was to visualise acetabular soft tissues under load and to quantify displacements using computed tomography (CT) scans (XtremeCT, Scano Medical).

A CT scan (resolution 82 μm) was performed on the disarticulated, unloaded porcine acetabulum. The femoral head was soaked in Sodium Iodide (NaI) solution and cling film wrapped to prevent transfer to the acetabular side. The joint was realigned, compressed using cable ties and re-scanned. The two images were down-sampled to 0.3 mm. Acetabular bone and soft tissues were segmented. Bony features were used to register the two background images, using Simpleware ScanIP 7.0 (Synopsys), to the same position and orientation (volume difference < 5%). Acetabular soft tissues displacements were measured by tracking the same points at the tissue edges on the two acetabular masks, along with difference in bone position as an additional error assessment.

The use of radiopaque solution provided a clear contrast allowing separation of the femoral and acetabular soft tissues in the loaded image. The image registration process resulted in a difference in bone position in the areas of interest equivalent to image resolution (0.3 mm, a mean of 3 repeats by same user). A labral tip displacement of 1.7 mm and a cartilage thickness change from 1.5 mm unloaded to 0.9 mm loaded, were recorded.

The combination of contrast enhancement, registration and focused local measurement was precise enough to reduce bone alignment error to that of image resolution and reveal local soft tissue displacements. These measurement methods can be used to develop models of soft tissues properties and behaviour, and therapy for hip tissue damage at early stage may be reviewed and optimised.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 25 - 25
1 Jan 2019
Jones P Woodgate S Williams D Biggs P Nicholas K Button K Corcoran P Holt C
Full Access

Whilst home-based exercise rehabilitation plays a key role in determining patient outcomes following orthopaedic intervention (e.g. total knee replacement), it is very challenging for clinicians to objectively monitor patient progress, attribute functional improvement (or lack of) to adherence/non-adherence and ultimately prescribe personalised interventions. This research aimed to identify whether 4 knee rehabilitation exercises could be objectively distinguished from each other using lower body inertial measurement units (IMUs) and principle components analysis (PCA) in the hope to facilitate objective home monitoring of exercise rehabilitation.

5 healthy participants performed 4 repetitions of 4 exercises (knee flexion in sitting, knee extension, single leg step down and sit to stand) whilst wearing lower body IMU sensors (Xsens, Holland; sampling at 60 Hz). Anthropometric measurements and a static calibration were combined to create the biomechanical model, with 3D hip, knee and ankle angles computed using the Euler sequence ZXY. PCA was performed on time normalised (101 points) 3D joint angle data which reduced all joint angle waveforms into new uncorrelated PCs via an orthogonal transformation. Scatterplots of PC1 versus PC2 were used to visually inspect for clustering between the PC values for the 4 exercises. A one-way ANOVA was performed on the first 3 PC values for the 9 variables under analysis. Games-Howell post hoc tests identified variables that were significantly different between exercises.

All exercises were clearly distinguishable using the PC scatterplot representing hip flexion-extension waveforms. ANOVA results revealed that PC1 for the knee flexion angle waveform was the only PC value statistically different across all exercises.

Findings demonstrate clear potential to objectively distinguish between different knee rehabilitation exercises using IMU sensors and PCA. Flexion-extension angles at the hip and knee appear most suited for accurate separation, which will be further investigated on patient data and additional exercises.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 7 - 7
1 Jan 2019
Owston H Moisley K Tronci G Giannoudis P Russell S Jones E
Full Access

The current ‘gold’ standard surgical intervention for critical size bone defect repair involves autologous bone grafting, that risks inadequate graft containment and soft tissue invasion. Here, a new regenerative strategy was explored, that uses a barrier membrane to contain bone graft. The membrane is designed to prevent soft tissue ingrowth, whilst supporting periosteal regrowth, an important component to bone regeneration. This study shows the development of a collagen-based barrier membrane supportive of periosteal-derived mesenchymal stem cell (P-MSC) growth.

P-MSC-homing barrier membranes were successfully obtained with nonaligned fibres, via free-surface electrospinning using type I collagen and poly(E-caprolactone) in 1,1,1,3,3,3-Hexafluoro-2-propanol. Introduction of collagen in the electrospinning mixture was correlated with decreased mean fibre diameter (d: 319 nm) and pore size (p: 0.2–0.6 μm), with respect to collagen-free membrane controls (d: 372 nm; p: 1–2 μm). Consequently, as the average MSC diameter is 20 μm, this provides convincing evidence of the creation of a MSC containment membrane.

SEM-EDX confirmed Nitrogen and therefore collagen fibre localisation. Quantification of collagen content, using Picro Sirius Red dye, showed a 50% reduction after 24 hours (PBS, 37 °C), followed by a drop to 25% at week 3. The collagen-based membrane has a significantly higher elastic modulus compared to collagen-free control membranes. P-MSCs attached and proliferated when grown onto collagen-based membranes, imaged using confocal microscopy over 3 weeks. A modified transwell cell migration assay was developed, using MINUSHEET® tissue carriers to assess barrier functionality. In line with the matrix architecture, the collagen-based membrane proved to prevent cell migration (via confocal microscopy) in comparison to the migration facilitating positive control.

The aforementioned results obtained at molecular, cellular and macroscopic scales, highlight the applicability of this barrier membrane in a new ‘hybrid graft’ regenerative approach for the surgical treatment of critical size bone defects.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 2 - 2
1 Nov 2018
Jones DA Vasarheyli F Deo S Nagy E
Full Access

With increasing numbers of total joint arthroplasties being performed, peri-prosthetic fracture incidence is rising, and operative management remains the gold standard. Short-term survivorship up to 12 months has been well-documented but medium to long-term is almost unknown. We present survivorship review from a district general hospital, undertaking 800 primary hip and knee arthroplasties per year. Patients with peri-prosthetic fractures and background total knee replacements were identified using our computer database between 2006–2011. All patients were operated on our site; methods used include open reduction, internal fixation (ORIF) using Axsos (Stryker Newbury) locking plates (28), intra-medullary nailing (1) or complex revision (6) depending on fracture and patient factors and surgeon's preference. Mortality was assessed at 30 days, 12 months and 5 years. Thirty-four patients were identified with a 7:1 female to male ratio and mean age of 76. 75% of patients had their primary arthrodesis at our hospital. There was only 1 plate failure noted requiring revision plating. Mortality at 30 days, 12 months and 5 years were 3.2, 12.5% and 50% respectively. When compared to the literature our time interval from index surgery to fracture is considerably longer (115 vs 42 months). Further multi-centre reviews are required to further asses this unexpected finding. Overall mortality is better than our hip fracture cohort, suggesting that good results can be achieved in District Hospital. The longer-term results are encouraging and can act as a guide for patients with this injury. We recommend that patients are managed in consultant-led, multi-disciplinary teams.


Bone & Joint Research
Vol. 6, Issue 11 | Pages 631 - 639
1 Nov 2017
Blyth MJG Anthony I Rowe P Banger MS MacLean A Jones B

Objectives

This study reports on a secondary exploratory analysis of the early clinical outcomes of a randomised clinical trial comparing robotic arm-assisted unicompartmental knee arthroplasty (UKA) for medial compartment osteoarthritis of the knee with manual UKA performed using traditional surgical jigs. This follows reporting of the primary outcomes of implant accuracy and gait analysis that showed significant advantages in the robotic arm-assisted group.

Methods

A total of 139 patients were recruited from a single centre. Patients were randomised to receive either a manual UKA implanted with the aid of traditional surgical jigs, or a UKA implanted with the aid of a tactile guided robotic arm-assisted system. Outcome measures included the American Knee Society Score (AKSS), Oxford Knee Score (OKS), Forgotten Joint Score, Hospital Anxiety Depression Scale, University of California at Los Angeles (UCLA) activity scale, Short Form-12, Pain Catastrophising Scale, somatic disease (Primary Care Evaluation of Mental Disorders Score), Pain visual analogue scale, analgesic use, patient satisfaction, complications relating to surgery, 90-day pain diaries and the requirement for revision surgery.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 23 - 23
1 May 2017
Jordan R Jones A Malik S
Full Access

Introduction

The stability of the elbow joint following an acute elbow dislocation is dependent on associated injuries. The ability to identify these concomitant injuries correctly directs management and improves the chances of a successful outcome. Interpretation of plain radiographs in the presence of either a dislocation or post-reduction films with plaster in-situ is difficult. This study aimed to assess the ability of orthopaedic registrars to accurately identify associated bony injuries on initial plain radiographs using CT as the gold standard for comparison.

Methods

Patients over the age of 16 years undergoing an elbow CT scan within one week of a documented elbow dislocation between 1st June 2010 and 1st June 2014 were included in the study. Three orthopaedic registrars independently reviewed both the initial dislocation and immediate post reduction plain radiographs to identify any associated bony injuries. This radiograph review was repeated by each registrar after two weeks. The incidence of associated injuries as well as the inter- and intra-observer variability was calculated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 82 - 82
1 Apr 2017
Palmer J Palmer A Jones L Jackson W Glyn-Jones S Price A
Full Access

Background

Since 2011, the knee service at the Nuffield Orthopaedic Centre has been offering a neutralising medial opening wedge high tibial osteotomy (HTO) to a group of patients presenting with early medial osteoarthritis of the knee, varus alignment and symptoms for more than 2 years. During development of this practice an association was observed between this phenotype of osteoarthritis and the presence of CAM deformity at the hip.

Methods

A retrospective cohort study. All patients who underwent HTO since 2011 were identified (n=30). Comparator groups were used in order to establish whether meaningful observations were being made: Control group: The spouses of a high-risk osteoarthritis cohort recruited for a different study at our unit (n=20) Pre-arthroplasty group: Patients who have undergone uni-compartmental arthroplasty (UKA) for antero-medial osteoarthritis (n=20)All patients had standing bilateral full-length radiographs available for analysis using in house developed Matlab-based software for hip measurements and MediCAD for lower limb alignment measurements.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 22 - 22
1 Apr 2017
Jones M Parry M Whitehouse M Blom A
Full Access

Background

Frequency of primary total hip (THA) and total knee (TKA) arthroplasty procedures is increasing, with a subsequent rise in revision procedures. This study aims to describe timing and excess surgical mortality associated with revision THA and TKA compared to those on the waiting list.

Methods

All patients from 2003–2013 in a single institution who underwent revision THA and TKA, or added to the waiting list for the same procedure were recorded. Mortality rates were calculated at cutoffs of 30- and 90-days post-operation or addition to the waiting list.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 49 - 49
1 Apr 2017
Lancaster-Jones O Al-Hajjar M Thompson J Isaac G Fisher J
Full Access

Background

Many factors contribute to the occurrence of edge-loading conditions in hip replacement; soft tissue tension, surgical position, patient biomechanical variations and type of activities, hip design, etc. The aim of this study was to determine the effect of different levels of rotational and translational surgical positioning of hip replacement bearings on the occurrence and severity of edge-loading and the resultant wear rates.

Method

The Leeds II Hip-Joint Simulator and 36mm diameter alumina matrix composite ceramic bearings (BIOLOX delta, DePuy Synthes, UK) were used in this study. Different levels of mismatch between the reconstructed rotational centres of the head and the cup were considered (2, 3 and 4mm) in the medial-lateral axis. Two cup inclination angles were investigated; an equivalent to 45 and 65 degrees in-vivo, thus six conditions (n=6 for each condition) were studied in total with three million cycles completed for each condition. The wear of the ceramic-on-ceramic bearings were determined using a microbalance (Mettler Toledo, XP205, UK) and the dynamic microseparation displacement was measured using a Liner Variable Differential Transformer.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 65 - 65
1 Jan 2017
Lenguerrand E Whitehouse M Beswick A Jones S Porter M Toms A Blom A
Full Access

Prosthetic joint infection (PJI) is an uncommon but serious complication of hip and knee replacement. We investigated the rates of revision surgery for the treatment of PJI following primary and revision hip and knee replacement, explored time trends, and estimated the overall surgical burden created by PJI.

We analysed the National Joint Registry for England and Wales for revision hip and knee replacements performed for a diagnosis of PJI and their index procedures from 2003–2014. The index hip replacements consisted of 623,253 primary and 63,222 aseptic revision hip replacements with 7,642 revisions subsequently performed for PJI; for knee replacements the figures were 679,010 primary and 33,920 aseptic revision knee replacements with 8,031 revisions subsequently performed for PJI. Cumulative incidence functions, prevalence rates and the burden of PJI in terms of total procedures performed as a result of PJI were calculated.

Revision rates for PJI equated to 43 out of every 10,000 primary hip replacements (2,705/623,253), i.e. 0.43%(95%CI 0.42–0.45), subsequently being revised due to PJI. Around 158 out of every 10,000 aseptic revision hip replacements performed were subsequently revised for PJI (997/63,222), i.e. 1.58%(1.48–1.67). For knees, the respective rates were 0.54%(0.52–0.56) for primary replacements, i.e. 54 out of every 10,000 primary replacements performed (3,659/679,010) and 2.11%(1.96–2.23) for aseptic revision replacements, i.e. 211 out of every 10,000 aseptic revision replacements performed (717/33,920). Between 2005 and 2013, the risk of revision for PJI in the 3 months following primary hip replacement rose by 2.29 fold (1.28–4.08) and after aseptic revision by 3.00 fold (1.06–8.51); for knees, it rose by 2.46 fold (1.15–5.25) after primary replacement and 7.47 fold (1.00–56.12) after aseptic revision. The rates of revision for PJI performed at any time beyond 3 months from the index surgery remained stable or decreased over time.

From a patient perspective, after accounting for the competing risk of revision for an aseptic indication and death, the 10-year cumulative incidence of revision hip replacement for PJI was 0.62%(95%CI 0.59–0.65) following primary and 2.25%(2.08–2.43) following aseptic revision; for knees, the figures were 0.75%(0.72–0.78) following primary replacement and 3.13%(2.81–3.49) following aseptic revision.

At a health service level, the absolute number of procedures performed as a consequence of hip PJI increased from 387 in 2005 to 1,013 in 2014, i.e. a relative increase of 2.6 fold. While 70% of those revisions were two-stage, the use of single stage revision increased from 17.6% in 2005 to 38.5% in 2014. For knees, the burden of PJI increased by 2.8 fold between 2005 and 2014. Overall, 74% of revisions were two-stage with an increase in use of single stage from 10.0% in 2005 to 29.0% in 2014.

Although the risk of revision due to PJI following hip or knee replacement is low, it is rising. Given the burden and costs associated with performing revision joint replacement for prosthetic joint infection and the predicted increased incidence of both primary and revision hip replacement, this has substantial implications for service delivery.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 46 - 46
1 Oct 2016
Nair A Dolan J Tanner KE Pollock PJ Kerr C Oliver FB Watson MJ Jones B Kellett CF
Full Access

Adductor canal blocks offer an alternative to femoral nerve block for postoperative pain relief in knee arthroplasty. They may reduce the risk of quadriceps weakness, allowing earlier mobilisation of patients postoperatively. However, little is known about the effect of a tourniquet on the distribution of local anaesthetic in the limb.

Ultrasound-guided adductor canal blocks were performed on both thighs of five human cadavers. Left and right thighs of each cadaver were randomised to tourniquet or no tourniquet for one hour. Iohexol radio-opaque contrast (Omnipaque 350) was substituted for the local anaesthetic for X-Ray imaging. All limbs underwent periodic flexion and extension during this hour to simulate positioning during surgery. The cadavers were refrozen. Fiducial markers were inserted into the frozen tissue. X-rays were obtained in 4 planes (AP, lateral 45° oblique/medial oblique, lateral). University Research Ethics Approval was obtained and cadavers were all pre-consented for research, imaging and photography according to the Anatomy Act (1984).

Analysis of radiographs showed contrast distribution in all thighs to be predominantly on the medial aspect of the thighs. The contrast margins were entire and well circumscribed, strongly suggesting it was largely contained within the aponeurosis of the adductor canal. Tourniquets appeared to push the contrast into a narrower and more distal spread along the length of the thigh compared to a more diffuse spread for those without. Proximal spread towards the femoral triangle was reduced in limbs without tourniquets.

The results suggest that contrast material may remain within the adductor canal structures during adductor canal blocks. Tourniquets may cause greater distribution of contrast proximally and distally in the thigh, but this does not appear to be clinically significant. Further studies might include radio-stereo photometric analysis using the fiducial markers in the limbs and in vivo studies to show the effect of haemodynamics on distribution.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 12 - 12
1 Oct 2015
Legerlotz K Jones E Riley G
Full Access

Introduction

The exact mechanisms leading to tendinopathies and tendon ruptures remain poorly understood while their occurrence is clearly associated with exercise. Overloading is thought to be a major factor contributing to the development of tendon pathologies. However, as animal studies have shown, heavy loading alone won't cause tendinopathies. It has been speculated, that malfunctioning adaptation or healing processes might be involved, triggering tendon tissue degeneration. By analysing the expression of the entirety of degrading enzymes (degradome) in pathological and non-pathological, strained and non-strained tendon tissue, the aim of this study was to identify common or opposite patterns in gene regulation. This approach may generate new targets for future studies.

Materials and Methods

RNA was extracted from different tendon tissues: normal (n=7), tendinopathic (n=4) and ruptured (n=4) Achilles tendon; normal (n=4) and tendinopathic (n=4) posterior tibialis tendon; normal hamstrings tendon with or without subjection to static strain (n=4). The RNA was reverse transcribed, then pooled per group The expression of 538 protease genes was analysed using Taqman low-density array quantitative RT-PCR. To be considered relevant, changes had to be at least 4fold and measurable at a level below 36 Cts.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 32 - 32
1 Oct 2015
Chauhan A Morrissey D Jones P Angioi M Kumar B Langberg H Maffulli N Malliaras P
Full Access

Introduction

Achilles tendinopathy (AT) is a highly prevalent injury in athletes and non-athletes with an unknown aetiology. Genetic risk factors have been a recent focus of investigation. The aim of this systematic review was to determine which loci have been linked with mid-portion AT and could potentially be used as biomarkers in tendinopathy risk models or as preventative or therapeutic targets.

Materials and Methods

Eight electronic bibliographic databases were searched from inception to April 2015 for cross-sectional, prospective cohort and case-control studies that included empirical research investigating genes associated with mid-portion AT. Potential publications were assessed by two independent reviewers (AAC and PRJ) for inclusion and quality. Quality was evaluated using a validated scale.