header advert
Results 51 - 62 of 62
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 386 - 386
1 Dec 2013
Kurtz S Zielinska O MacDonald D Cates H Mont M Malkani AL Parvizi J Rimnac C
Full Access

Introduction:

First generation highly crosslinked polyethylenes (HXPLEs) have proven successful in lowering both penetration and osteolysis rates. However, 1st generation annealing and remelting thermal stabilization have been associated with in vivo oxidation or reduced mechanical properties. Thus, 2nd generation HXLPEs were developed to improve oxidative stability while still maintaining material properties. Little is known about the in vivo clinical failure modes of these 2nd generation HLXPEs.

The purpose of this study was to assess the revision reasons, wear, oxidative stability, and mechanical behavior of retrieved sequentially annealed Vitamin E diffused HXLPE in THA and TKA.

Methods:

251 2nd Generation HXLPE hip and knee components were consecutively retrieved during revision surgeries and continuously analyzed in a prospective, IRB approved, multicenter study. 123 acetabular liners (Implanted 1.2y; Range 0–5.0y) and 117 tibial inserts (Implanted 1.6y; Range 0–5.8y) were highly crosslinked and annealed in 3 sequential steps (X3). Five acetabular liners (Implanted 0.6y; Range 0–2.0y) and six tibial inserts (Implanted 1.3y; Range 0.5–1.8y) were diffused with Vitamin E (E1). Patient information was collected from medical records (Table 1).

Linear penetration of liners was measured using a calibrated digital micrometer (accuracy: 0.001 mm). Surface damage of tibial components was assessed using the Hood method. Thin sections were taken from the acetabular liners (along the superior/inferior axis) and the tibial components (along the medial condyle and central spine) for oxidation analysis and analyzed according to ASTM 2102. Mechanical behavior was assessed via the small punch test (ASTM 2183).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 387 - 387
1 Dec 2013
Kurtz S MacDonald D Higgs G Gilbert J Klein GR Mont M Parvizi J Kraay M Rimnac C
Full Access

Introduction:

Degradation of modular head-neck tapers was raised as a concern in the 1990s (Gilbert 1993). The incidence of fretting and corrosion among modern, metal-on-polyethylene and ceramic-on-polyethylene THA systems with 36+ mm femoral heads remains poorly understood. Additionally, it is unknown whether metal debris from modular tapers could increase wear rates of highly crosslinked PE (HXLPE) liners.

The purpose of this study was to characterize the severity of fretting and corrosion at head-neck modular interfaces in retrieved conventional and HXLPE THA systems and its effect on penetration rates.

Patients & Methods:

386 CoCr alloy heads from 5 manufacturers were analyzed along with 166 stems (38 with ceramic femoral heads). Metal and ceramic components were cleaned and examined at the head taper and stem taper by two investigators. Scores ranging from 1 (mild) to 4 (severe) were assigned in accordance with the semi-quantitative method adapted from a previously published technique. Linear penetration of liners was measured using a calibrated digital micrometer (accuracy: 0.001 mm). Devices implanted less than 1 year were excluded from this analysis because in the short-term, creep dominates penetration of the head into the liner.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 110 - 110
1 Dec 2013
MacDonald D Kurtz S Kocagoz S Hanzlik J Underwood R Gilbert J Lee G Mont M Kraay M Klein GR Parvizi J Rimnac C
Full Access

Background:

Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Less is known about head-neck taper corrosion with ceramic femoral heads.

Questions/purposes:

We asked (1) whether ceramic heads resulted in less taper corrosion than CoCr heads; (2) what device and patient factors influence taper fretting corrosion; and (3) whether the mechanism of taper fretting corrosion in ceramic heads differs from that in CoCr heads.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 45 - 45
1 Dec 2013
Deirmengian C Kardos K Kilmartin P Cameron A Chung D Booth R Parvizi J
Full Access

INTRODUCTION:

The diagnosis of periprosthetic joint infection (PJI) remains a serious challenge. Based on previous work, we believe that biomarkers will become the mainstay of diagnosing PJI in the future. We report on completion of our 8 year comprehensive biomarker program, evaluating the diagnostic profile of the 15 most promising synovial fluid biomarkers.

METHODS:

Synovial fluid was prospectively collected from 99 patients being evaluated for infection in the setting of revision hip or knee arthroplasty. All synovial fluid samples were tested by immunoassay for 15 putative biomarkers that were developed and optimized specifically for use in synovial fluid. Sensitivity, specificity and receiver operating Characteristic (ROC) curve analysis were performed for all biomarkers.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 22 - 22
1 May 2013
Parvizi J
Full Access

Direct anterior approach (DAA) using the Hueter interval for total hip replacement (THA) provides an inter-nervous and inter-muscular access to the hip joint. Although it is technically demanding, the learning curve has been shown to be around 40 cases and 6 months in a high-volume joint surgeon's practice. A level-one study has demonstrated that DAA provides equal or better results and an equivalent rate of complications when compared to the highly utilized direct lateral approach. Using the available evidence to perform a multi-criteria decision analysis we demonstrated that DAA can be the most efficient approach to perform THA. From our standpoint, there is no reason to speculate a surgical approach with such advantages will be abandoned in the future. The DAA is here to stay, and may become the gold standard for THA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 102 - 102
1 May 2013
Parvizi J
Full Access

Total knee arthroplasty is an operation that can be performed with or without the use of tourniquet. Two systematic reviews and meta-analyses of the available literature have demonstrated that the use of tourniquet leads to a reduction in blood loss and also shortens the operative time. The opponents for use of tourniquet cite development of complications such as skin bruising, neurovascular injury, and metabolic disturbances as a deterrent for the use of tourniquet. Although the latter may be true for some patients such as those with previous vascular grafts, there is little evidence that routine use of tourniquet during TKA results in any of the above complications. The use of tourniquet on the other hand provides a bloodless field that allows the surgeon to perform the procedure with expediency and optimised visualisation. Blood conservation has gained extreme importance in recent years because of increased understanding of problems associated with blood transfusion such as increased surgical site infection (due to immunomodulation effect), increased length of hospital stay, increased cost and so on. Based on our understanding of the available evidence, we believe that routine use of tourniquet during TKA is justified and a good surgical practice.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 280 - 280
1 Mar 2013
Nevelos J Boucher F Parvizi J Nessler JP Kolisek FR
Full Access

A novel cementless tapered wedge femoral hip implant has been designed at a reduced length and with a geometry optimized to better fit a wide array of bone types (Accolade II, Stryker, Mahwah, USA). In this study, finite element analysis (FEA) is used to compare the initial stability of the new proposed hip stem to predicate tapered wedge stem designs. A fit analysis was also conducted. The novel stem was compared to a predicate standard tapered stem and a shortened version of that same predicate stem.

Methods

The novel shortened tapered wedge stem geometry was designed based on a morphological study of 556 CT scans. We then selected 10 discrete femoral geometries of interest from the CT database, including champagne fluted and stove pipe femurs. The novel and the predicate stems were virtually implanted in the bones in ABAQUS CAE. A total of thirty FEA models were meshed with 4 nodes linear tetrahedral elements. Bone/implant interface properties was simulated with contact surface and a friction coefficient of 0.35. Initial stability of each stem/bone assembly was calculated using stair-climbing loading conditions. The overall initial stability of the HA coated surface was evaluated by comparing the mean rotational, vertical, gap-opening and total micromotion at the proximal bone/implant interface of the novel and predicate stem designs.

To characterize the fit of the stem designs we analyzed the ratio of a distal (60 mm below lesser trochanter) and a proximal (10 mm above lesser trochanter) cross section. A constant implantation height of 20 mm above the lesser trochanter was used. The fit of the stems was classified as Type 1 (proximal and distal engagement), Type 2 (proximal engagement only) and Type 3 (distal engagement only).

Results

The mean % micromotion of the HA coated surface greater than 50 mm was lowest at 40.2% (SD 11.5%) for the novel tapered wedge stem compared to the clinically successful predicate stem design (Accolade TMAZ, Stryker, Mahwah, USA) at 44.9% (SD 13.2%) and its shortened version at 48.5% (SD 9.0%) as shown in Figure 1. Improved initial stability of the new stem was also confirmed for rotational, vertical and gap-opening micromotion. However, there was no statistically significant difference.

The novel tapered stem design showed a well balanced proximal to distal ratio throughout the complete size range. The novel tapered stem design showed a reduced percentage of distal engagements (2.8%) compared to the predicate standard stem (17.2%). In the 40 to 60 year old male group the distal engagement for the standard stem increases (28.2%), whereas the distal engagements for the novel stem remains unchanged (1.3%).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 232 - 232
1 Mar 2013
Kurtz S MacDonald D Kocagoz S Tohfafarosh M Parvizi J Klein GR Lee G Marshall A Mont M Kraay M Stulberg B Rimnac C
Full Access

Introduction

Sequentially annealed highly crosslinked polyethylenes (HXLPEs) were introduced in total knee replacement (TKR) starting in 2005 to reduce wear and particle-induced osteolysis. Few studies have reported on the clinical performance of HXLPE knees. In this study, we hypothesized that due to the reduced free radicals, sequentially annealed HXLPE would have lower oxidation levels than gamma inert-sterilized controls.

Methods

145 tibial components were retrieved at consecutive revision surgeries at 7 different surgical centers. 74 components were identified as sequentially annealed HXLPE (X3, Stryker) while the remainder (n = 71) were conventional gamma inert sterilized polyethylene. The sterilization method was confirmed by tracing the lot numbers by the manufacturer. The conventional inserts were implanted for 1.7 years (Range: 0.0–9.3 years), while the X3 components were implanted 1.1 years (Range: 0.0–4.5 years). Surface damage was assessed using the Hood method. Oxidation analysis was performed in accordance with ASTM 2102 following submersion in boiling heptane for 6 hours to remove absorbed lipids. 30 of the conventional and 29 of the HXLPE inserts were available for oxidation analysis.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 108 - 108
1 Mar 2013
Higgs G Kurtz S Hanzlik J MacDonald D Kane WM Day J Klein GR Parvizi J Mont M Kraay M Martell J Gilbert J Rimnac C
Full Access

Introduction

Wear debris generation in metal-on-metal (MOM) total hip arthroplasty (THA) has emerged as a compelling issue. In the UK, clinically significant fretting corrosion was reported at head-taper junctions of MOM hip prostheses from a single manufacturer (Langton 2011). This study characterizes the prevalence of fretting and corrosion at various modular interfaces in retrieved MOM THA systems used in the United States.

Methods and Materials

106 MOM bearing systems were collected between 2003 and 2012 in an NIH-supported, multi-institutional retrieval program. From this collection, 88 modular MOM THA devices were identified, yielding 76 heads and 31 stems (22 modular necks) of 7 different bearing designs (5 manufacturers) for analysis. 10 modular CoCr acetabular liners and 5 corresponding acetabular shells were also examined. Mean age at implantation was 58 years (range, 30–85 years) and implantation time averaged 2.2 ± 1.8 years (range, 0–11.0 years). The predominant revision reason was loosening (n=52). Explants were cleaned and scored at the head taper, stem taper, proximal and distal neck tapers (for modular necks), liner, and shell interfaces in accordance with the semi-quantitative method of Goldberg et al. (2002).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 107 - 107
1 Mar 2013
Kurtz S MacDonald D Parvizi J Klein GR Lee G Marshall A Mont M Kraay M Stulberg B Malkani AL Rimnac C
Full Access

Introduction

The purpose of this multicenter study was to assess the oxidative stability, mechanical behavior, wear and reasons for revision of 2nd generation sequentially annealed HXLPE, X3, and compare it to 1st generation XLPE, Crossfire. We hypothesized that X3 would exhibit similar wear rates but lower oxidation than Crossfire.

Methods

182 hip liners were consecutively retrieved during revision surgeries at 7 surgical centers and continuously analyzed over the past 12 years in a prospective, multicenter study. 90 were highly crosslinked and annealed (Crossfire; Implanted 4.2±3.4 years, max: 11 years), and 92 were highly crosslinked and annealed in 3 sequential steps (X3; Implanted 1.2±1.5 years; max: 5 years). Oxidation was characterized in accordance with ASTM 2102 using transmission FTIR performed on thin sections (∼200μm) from the superior/inferior axis. Mechanical behavior was assessed via the small punch test (ASTM 2183).


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 4 - 9
1 Jan 2013
Goyal N Miller A Tripathi M Parvizi J

Staphylococcus aureus is one of the leading causes of surgical site infection (SSI). Over the past decade there has been an increase in methicillin-resistant S. aureus (MRSA). This is a subpopulation of the bacterium with unique resistance and virulence characteristics. Nasal colonisation with either S. aureus or MRSA has been demonstrated to be an important independent risk factor associated with the increasing incidence and severity of SSI after orthopaedic surgery. Furthermore, there is an economic burden related to SSI following orthopaedic surgery, with MRSA-associated SSI leading to longer hospital stays and increased hospital costs. Although there is some controversy about the effectiveness of screening and eradication programmes, the literature suggests that patients should be screened and MRSA-positive patients treated before surgical admission in order to reduce the risk of SSI.

Cite this article: Bone Joint J 2013;95-B:4–9.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 206 - 206
1 Sep 2012
Cashman J MacKenzie J Parvizi J
Full Access

Background

The diagnosis of Periprosthetic Joint Infection (PJI) is a considerable challenge in total joint arthroplasty. The mainstay for diagnosis of PJI is a combination of serological markers, including C-reactive protein (CRP), along with joint aspirate for white cell count, differential and culture. The aim of this study was to examine the use of synovial fluid CRP in the diagnosis of PJI.

Material & Methods

Synovial fluid samples were collected prospectively from patients undergoing primary and revision knee arthroplasty. Samples were assessed for CRP, cell count and differential. Three groups were analyzed; those undergoing primary knee arthroplasty, aseptic knee arthroplasties and infected arthroplasties. Demographic data, along with associated medical co-morbidities, were collected,. Statistical analysis was performed. Synovial fluid CRP was correlated with serum CRP values. Sensitivity and specificity were calculated.