header advert
Results 21 - 22 of 22
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 282 - 282
1 Jul 2014
Rochford E Brescó MS Ziegler M O'Mahoney L Richards G Moriarty F
Full Access

Summary

An in vivo model of implant infection was developed to assess immune response. Titanium and PEEK implants were tested in the presence of an osteotomy and Staphylococcus aureus contamination. Immune response differed yet the outcome of contamination did not.

Introduction

The presence of an implant increases infection risk by reducing the number of bacteria required to cause an infection. The nature or magnitude of this risk may be influenced by the implant material. A model of implant associated osteomyelitis was developed based upon the MouseFixTM model and the development of infection and immune responses associated with either titanium or PEEK implants was investigated.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 280 - 280
1 Jul 2014
Stadelmann V Potapova I Camenisch K Eberli U Richards G Moriarty F
Full Access

Summary Statement

In vivo microCT allows monitoring of subtle bone structure changes around infected implants in a rat model.

Introduction

The principal causes of orthopedic implant revisions are periprosthetic bone loss and infections. Immediately after implantation, a dynamic process of bone formation and resorption takes place around an orthopedic implant, influencing its mechanical fixation. Despite its importance, the effect of bacteria on the temporal pattern of periprosthetic remodeling is still unknown. The aim of this study was to evaluate the morphological changes of bone adjacent to an implant in the presence and absence of infection using micro computed tomography (microCT).