header advert
Results 21 - 26 of 26
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 12 - 12
1 Sep 2012
Hossain M Beard D Murray D Andrew G
Full Access

Introduction

Acetabular cup lucency predicts cup survival. The relationship of subchondral plate removal and cup survival is unclear. Using data from a prospective study conducted between January 1999 and January 2002 we investigated the role of subchondral plate removal in cemented acetabular cup survival at five years.

Methods

A number of cemented cups were implanted using antero-lateral and posterior approaches.1400 cups were inserted. 935 cups (67%) were followed up at 5 years and acetabular radiolucency (AR) recorded.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXII | Pages 21 - 21
1 Jul 2012
Monk A Grammatopoulos G Chen M Gibbons C Beard D Murray D Gill H
Full Access

A femoral head/neck ratio (HNR) of less than 1.27 is associated with an increased risk of arthritis. The aim of this study was to establish whether there is evolutionary evidence that the homonin, bipedal stance has led to alterations in HNR that predispose humans to osteoarthritis (OA).

Specimens provided by The Natural History Museums of London, Oxford and the Department of Zoology, University of Oxford were grouped according to gait pattern, HAKF (Hip and knee flexed), Arboreal (ability to stand with hip and knee joints extended) and homonin/bi-pedal. Specimens included those from Devonion, Triassic, Jurrasic, Cretaceous, Miocene, Paleolithic, Pleistocene periods to modern day. Three-dimensional skeletal geometries were segmented using CT images and HNR measurements were taken from coronal views. These were compared with the HNR of 119 asymptomatic human volunteers and 210 patients that had a hip joint replacement for primary OA.

Species of the HAKF group had the smallest HNR (1.10, SD:0.09). Species of the Arboreal group had significantly higher HNR (1.63, SD:0.15) in comparison to the Bipedal group (1.41, SD:0.04) (p=0.006), Human (1.33, SD:0.08) and the OA group (1.3, SD:0.09).

The range of movement associated with arboreal habitat caused an associated change in HNR. This study would suggest that the HNR peaked in the Miocene period with species that ambulated on both ground and trees. More recent homonin gait appears to have developed a smaller HNR and humans have the smallest amongst their close ancestors. Evolutionary theory would suggest that modern environmental pressures might pre-dispose future hominin evolution to OA, secondary to a further reduction in HNR.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIV | Pages 24 - 24
1 Jul 2012
Mehmood S Gill H Murray D Glyn-Jones S
Full Access

Stem geometry is known to influence the outcome in THA; however it is unknown whether the material properties, stiffness in particular can influence the stem stability and outcome. The aim of this study was to measure the influence of stem material properties on micromotion and migration using Roentgen Stereophotogrammetric Analysis (RSA) system.

41 patients were implanted with a collarless polished tapered (CPT) femoral stem (Zimmer, Warsaw, Indiana), which was made of either cobalt-chromium (CoCr) (n=21) or stainless steel (n=20). RSA was used to measure dynamically inducible micromotion (DIMM: difference in stem position in going from double-leg stance (DLS) to single leg stance (SLS)), prosthesis bending (difference in the head-tip distance when going from DLS to SLS), and mean migration of the head, tip and the cement restrictor. DIMM and bending were measured at 3 months, migration at 6, 12 and 24 months. All analyses were carried out using SPSS for windows (v.15.0.0, Chicago. IL, USA). Results were reported as mean ± 95% confidence interval (CI) and regarded as significant when p < 0.05.

Preliminary analysis showed that total head DIMM was significantly (p = 0.02) greater for CoCr (0.97mm ± 0.6mm) than stainless steel (0.27mm ± 0.6mm). The mean stem bending for CoCr was 0.08mm (± 0.06mm) and for stainless steel 0.15mm (± 0.06mm) (p =0.77). Both implants heads migrated posteriorly, medially and distally. The mean subsidence for the cobalt-chromium and stainless steel stems was 1.02mm (± 0.19mm) (p < 0.001) and 1.12mm (± 0.34mm) (p=0.001) (p= 0.07) at 24 months.

It was interesting to note that the dynamically induced micromotion was greater for the stiffer stem, however there were no differences in terms of overall migration, indicating that survival (in terms of loosening) should be the similar for both steel and CoCr versions of this implant.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVII | Pages 11 - 11
1 May 2012
Hossain M Parfitt D Beard D Darrah C Nolan J Murray D Andrew J
Full Access

Introduction

Preoperative psychological distress has been reported to predict poor outcome and patient dissatisfaction after total hip replacement (THR). We investigated this relationship in a prospective multi-centre study between January 1999 and January 2002.

Methods

We recorded the Oxford Hip Score (OHS) and SF36 score preoperatively and up to five years after surgery and a global satisfaction questionnaire at five year follow up for 1039 patients. We dichotomised the patients into the mentally distressed (Mental Health Scale score - MHS <50) and the not mentally distressed (MHS (50) groups based on their pre-operative MHS of the SF36. 776 (677 not distressed and 99 distressed) out of 1039 patients were followed up at 5 years.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 26 - 26
1 Mar 2012
Steffen R O'Rourke K Murray D Gill H
Full Access

In 12 patients, we measured the oxygen concentration in the femoral head-neck junction during hip resurfacing through the anterolateral approach. This was compared with previous measurements made for the posterior approach. For the anterolateral approach, the oxygen concentration was found to be highly dependent upon the position of the leg, which was adjusted during surgery to provide exposure to the acetabulum and femoral head. Gross external rotation of the hip gave a significant decrease in oxygenation of the femoral head. Straightening the limb led to recovery in oxygen concentration, indicating that the blood supply was maintained. The oxygen concentration at the end of the procedure was not significantly different from that at the start.

The anterolateral approach appears to produce less disruption to the blood flow in the femoral head-neck junction than the posterior approach for patients undergoing hip resurfacing. This may be reflected subsequently in a lower incidence of fracture of the femoral neck and avascular necrosis.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 13 - 13
1 Feb 2012
Steffen R Smith S Gill H Beard D McLardy-Smith P Urban J Murray D
Full Access

This study aims to investigate femoral blood flow during Metal-on-Metal Hip Resurfacing (MMHR) by monitoring oxygen concentration during the operative procedure.

Patients undergoing MMHR using the posterior approach were evaluated. Following division of fascia lata, a calibrated gas-measuring electrode was inserted into the femoral neck, aiming for the supero-lateral quadrant of the head. Baseline oxygen concentration levels were detected after electrode insertion 2-3cm below the femoral head surface and all intra-operative measures were referenced against these. Oxygen levels were continuously monitored throughout the operation. Data from ten patients are presented.

Oxygen concentration dropped most noticeably during the surgical approach and was reduced by 62% (Std.dev +/-26%) following dislocation and capsulectomy. Insertion of implants resulted in a further oxygenation decrease by 18% (Std.dev +/-28%). The last obtained measure before wound closure detected 22% (Std.dev +/-31%) of initial baseline oxygen levels. Variation between subjects was observed and three patients demonstrated a limited recovery of oxygen levels during implant insertion and hip relocation.

Intra-operative measurement of oxygen concentration in blood perfusing the femoral head is feasible. Results in ten patients undergoing MMHR showed a dramatic effect on the oxygenation in the femoral head during surgical approach and implant fixation. This may increase the risk of avascular necrosis and subsequent femoral neck fracture. Future experiments will determine if less invasive procedures or specific positioning of the limb can protect the blood supply to femoral neck and head.