Advertisement for orthosearch.org.uk
Results 1 - 20 of 108
Results per page:
Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 59 - 66
1 Jun 2021
Abhari S Hsing TM Malkani MM Smith AF Smith LS Mont MA Malkani AL

Aims. Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted kinematic alignment. Methods. A total of 121 consecutive TKAs performed between 11 February 2018 to 11 June 2019 with preoperative varus deformity were reviewed at minimum one-year follow-up. Three knees were excluded due to severe preoperative varus deformity greater than 15°, and a further three due to requiring revision surgery, leaving 109 patients and 115 knees to undergo primary TKA using the concept of restricted kinematic alignment with advanced technology. Patients were stratified into three groups based on the preoperative limb varus deformity: Group A with 1° to 5° varus (43 knees); Group B between 6° and 10° varus (56 knees); and Group C with varus greater than 10° (16 knees). This study group was compared with a matched cohort of 115 TKAs and 115 patients using a neutral mechanical alignment target with manual instruments performed from 24 October 2016 to 14 January 2019. Results. Mean overall patient satisfaction for the entire cohort was 4.7 (SE 0.1) on a 5-point Likert scale, with 93% being either very satisfied or satisfied compared with a Likert of 4.3 and patient satisfaction of 81% in the mechanical alignment group (p < 0.001 and p < 0.006 respectively). At mean follow-up of 17 months (11 to 27), the mean overall Likert, Knee Injury and Osteoarthritis Outcome Score for Joint Replacement, Western Ontario and McMaster Universities Osteoarthritis Index, Forgotten Joint Score, and Knee Society Knee and Function Scores were significantly better in the kinematic group than in the neutral mechanical alignment group. The most common complication in both groups was contracture requiring manipulation under anaesthesia, involving seven knees (6.1%) in the kinematic group and nine knees (7.8%) in the mechanical alignment group. Conclusion. With the advent of advanced technology, and the ability to obtain accurate bone cuts, the target limb alignment, and soft-tissue balance within millimetres, using a restricted kinematic alignment concept demonstrated excellent patient satisfaction following primary TKA. Longer-term analysis is required as to the durability of this method. Cite this article: Bone Joint J 2021;103-B(6 Supple A):59–66


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims. The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?. Methods. A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship. Results. The postoperative HKA distribution varied from 9° varus to 11° valgus. All PROMs showed statistical improvements at one year (p < 0.001), with further improvements at five years for Knee Osteoarthritis Outcome Score symptoms (p = 0.041) and Forgotten Joint Score (p = 0.011). Correlation analysis showed no difference (p = 0.610) between the hip-knee-ankle and joint line congruence angle at one and five years. Sub-group analysis showed no difference in PROMs for patients placed within 3° of neutral compared to those placed > 3°. There were no revisions for tibial loosening; however, there were reports of a higher incidence of poor patella tracking and patellofemoral stiffness. Conclusion. PROMs were not impacted by postoperative alignment category. Ligamentous stability was maintained at five years with joint line obliquity. There were no revisions for tibial loosening despite a significant portion of tibiae placed in varus; however, KA executed with IDI resulted in a higher than anticipated rate of patella complications. Cite this article: Bone Jt Open 2022;3(8):656–665


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims. This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height. Methods. Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components. Results. Femoral components in both MA and KA alignments exhibited a more valgus DTSA compared to native femora. However, DTSA deviation from native was significantly less in KA than in MA (4.8° (SD 2.2°) vs 8.8° (SD 1.8°); p < 0.001). DTSA deviation from native orientation correlated positively with the mechanical lateral distal femoral angle (mLDFA) in KA and negatively in MA (r = 0.53, p < 0.001; r = -0.18, p < 0.001). Medial trochlear height was not restored with either MA or KA, with MA resulting in lower medial trochlear height than KA in the proximal 20% of the trochlea. Lateral and sulcus trochlear height was not restored with either alignment in the proximal 80% of the trochlea. At the terminal arc point, KA replicated sulcus and lateral trochlear height, while MA led to over-restoration. Conclusion. Femoral components aligned in KA demonstrated greater biomimetic qualities than those in MA regarding trochlear sulcus orientation and trochlear height restoration, particularly in valgus femora. Variability across knees was observed, warranting further research to evaluate the clinical implications of these findings. Cite this article: Bone Joint J 2024;106-B(8):817–825


Aims. Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) versus components placed using computer-assisted surgery targeting neutral mechanical alignment (MA+CAS). Tibial component migration measured by radiostereometric analysis was the primary outcome measure (compared longitudinally between groups and to published acceptable thresholds). Secondary outcome measures were inducible displacement after one year and patient-reported outcome measures (PROMS) over two years. The secondary objective was to assess the relationship between alignment and both tibial component migration and inducible displacement. Patients and Methods. A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (. sd. 8). In the MA+CAS group, there were 17 female and six male patients with a mean age of 63 years (. sd. 7). Surgery was performed using cemented, cruciate-retaining Triathlon total knees with patellar resurfacing, and patients were followed up for two years. The effect of alignment on tibial component migration and inducible displacement was analyzed irrespective of study group. Results. There was no difference over two years in longitudinal migration of the tibial component between the KA+PSI and MA+CAS groups (reaching median maximum total point motion migration at two years of 0.40 mm for the KA+PSI group and 0.37 mm for the MA+CAS group, p = 0.82; p = 0.68 adjusted for age, sex, and body mass index (BMI) for all follow-ups). Both groups had mean migrations below acceptable thresholds. There was no difference in inducible displacement (p = 0.34) or PROMS (p = 0.61 for the Oxford Knee Score) between groups. There was no correlation between alignment and tibial component migration or alignment and inducible displacement. These findings support non-neutral alignment as a viable option with this component, with no evidence that it compromises fixation. Conclusion. Kinematic alignment using patient-specific instrumentation in TKA was associated with acceptable tibial component migration, indicating stable fixation. These results are supportive of future investigations of kinematic alignment. Cite this article: Bone Joint J 2019;101-B:929–940


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 75 - 75
1 Jun 2018
Lewallen D
Full Access

Even though primary total knee arthroplasty involves resurfacing the joint with metal and plastic it is much more of a soft tissue operation than it is a bony procedure. The idea that altering the planned bony resection by a few degrees on either the tibial or femoral side of the joint might somehow eliminate the multifactorial pain complaints and reduced patient satisfaction seen in some 20% or more of cases in reported clinical series is clearly overly optimistic. Axial alignment is important, but no more so than the level of distal femoral resection, tibial and femoral rotation, tibial resection level and downslope and femoral sagittal plane alignment. The real problem is that errors in component positioning are common, rarely made one at a time, and are made more common by greater procedural complexity. No matter the resection method (let alone the resection target!) errors are commonly linked and iterative. For example: femoral malrotation on an under-resected distal femur (in a knee with minimal arthritic wear to begin with) can contribute to corresponding tibial malrotation helped by a “floated” tibial trial on an all too often overly resected and downsloped tibial surface that has been recut to allow full extension with the under-resected femur (and now also results in AP laxity in flexion). Small changes in the alignment target will not fix this!. On the other hand: Kinematic alignment individualised to the patient's anatomy as a means of reducing soft tissue imbalance and minimizing ligamentous releases is actually a reasonable objective and a laudable goal on the surface. The problem with operationalizing this widely relates to what is currently required to try and reliably achieve this goal using currently available implants and technology. In the early 1980's the proponents of “anatomic” alignment with a residual 2- to 3-degree varus tibial resection and corresponding joint obliquity were Hungerford and Krackow. This concept was widely adopted but proved to be fraught with difficulty in the hands of community based surgeons in that era due to common excessive varus tibial resection errors and resulting premature implant failures. Recent reports on kinematic alignment involve a plethora of technology combinations including pre-operative CT (or MRI) for 3D reconstruction and planning, custom jig fabrication, and navigated bony preparation or individualised bony cuts off of patient specific jigs. The goal is to allow customised resections that “estimate” original cartilage thickness and bone erosion and seek to replicate the original however native anatomy and provide better precision for bone resection. Even when successful this is often followed by placement of a standard implant not too different from those in the 80's and 90's which may well have one femoral articular “J curve” for all patents, a single patellofemoral groove design and anatomic shape for all, and that makes use of a central keel on a nonanatomic tibial design with limited sizing increments, all implanted into a patient without an ACL and not infrequently PCL deficient as well. And all of this is done with the hope of restoring the normal original knee kinematics!. The frequent combination of several of the above factors clinically in a single knee may help explain some of the variability in results of kinematic alignment reported by some authors even after excluding certain pre-operative deformities (excess valgus or varus). For now mechanical alignment methods and instrumentation should remain the standard of care for routine TKA practice for most, and in complex primary cases for all


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases. Results. The use of E-rKA helped restore all knees within the predefined boundaries, with appropriate soft-tissue balancing. E-rKA compared with MA resulted in reduced residual medial tightness following surgical planning, in full extension (2.71 mm (SD 1.66) vs 5.16 mm (SD 3.10), respectively; p < 0.001), and 90° of flexion (2.52 mm (SD 1.63) vs 6.27 mm (SD 3.11), respectively; p < 0.001). Among the study population, 156 patients (78%) were managed with minor adjustments in component positioning alone, while 44 (22%) required additional soft-tissue releases. The mean errors in postoperative alignment were 0.53 mm and 0.26 mm among patients in group A and group B, respectively (p = 0.328). Conclusion. E-rKA is an effective and reproducible alignment strategy during RA-TKA, permitting a large proportion of patients to be managed without soft-tissue releases. The execution of minor alterations in component positioning within predefined multiplanar boundaries is a better starting point for gap management than soft-tissue releases. Cite this article: Bone Jt Open 2024;5(8):628–636


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 111 - 111
1 May 2016
Park S Jeong S Lee S
Full Access

Introduction. Most surgeons that have performed kinematically aligned TKA have noticed an overall better clinical outcome, better motion, better patient satisfaction, and a quicker recovery than their patients treated with mechanically aligned TKA. Materials and Methods. We prospectively followed all 128 knees who underwent primary total knee arthroplasty. The Lysholm knee score and VAS scale was recorded initially and 12months after the surgery. Independent T-test was used for statistical analysis at probability level of 95%. SPSS for Windows (Version 12, Chicago, Illinois) was used. Results. VAS score and passive ROM; Not significant difference statistically. But improved compared the preoperative and postoperative data. WOMAC score and HSS score; Significantly improved statistically. Discussion. Our data suggest that kinematic alignment may lessen the surgical stress experienced by the patient, reduce the pain, and increase function of knee. There is a need for more studies to clarify benefits of kinematic alignment technique. Kinematically aligned TKA restores function by aligning the femoral and tibial components to the normal or prearthritic joint lines of the knee. We prospectively followed all 128 knees who underwent total knee arthroplasty. We assessed postoperative function using the VAS, WOMAC, HSS score and passive ROM. HSS score and WOMAC score were significantly improved statistically


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_9 | Pages 13 - 13
1 May 2014
Arthur C Phillips J Toms A Mandalia V
Full Access

Kinematic alignment has increased in popularity over the last few years in an attempt to improve clinical outcomes following total knee arthroplasty (TKA). In our unit kinematic alignment has been used with patient-specific cutting guides as part of on-going clinical trials. We performed a retrospective analysis on all the TKA which had been planned to be implanted outside of the mechanical axis (0° ± 3°) based on pre-operative MRI scans and looked at their radiographic and clinical outcomes. We identified 21 knees which had been implanted as ‘planned outliers’. All had clinical and radiographic follow up to a mean 11.6 months post op. All had a standard long leg alignment radiograph performed at 6 weeks post op to confirm alignment. All patients had a good improvement in their Oxford Knee Scores with mean improvement from 23 pre-op to 42 at 1 year. Of our patients none had a poor clinical outcome due to the alignment of their TKA, 1 patient had a poor outcome because of a quadriceps rupture which occurred 4 months post-op. There were no post-operative radiographic abnormalities. In our unit kinematic alignment outside of the mechanical axis is not associated with an increased rate of short term complications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 54 - 54
1 Jul 2020
Vendittoli P Blakeney W Kiss M Puliero B Beaulieu Y
Full Access

Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) introduces significant anatomic modifications and secondary ligament imbalances. A restricted kinematic alignment (rKA) protocol was proposed to minimise these issues and improve TKA clinical results. A total of 1000 knee CT-Scans were analyzed from a database of patients undergoing TKA. rKA tibial and femoral bone resections were simulated. rKA is defined by the following criteria: Independent tibial and femoral cuts within ± 5° of the bone neutral mechanical axis and, a resulting HKA within ± 3° of neutral. Medial-lateral (ΔML) and flexion-extension (ΔFE) gap differences were calculated and compared with MA results. With the MA technique, femoral rotation was aligned with either the trans-epicondylar axis (TEA) or with 3° of external rotation to the posterior condyles (PC). Extension space ML imbalances (>/=3mm) occurred in 33% of TKA with MA technique versus 8% of the knees with rKA (p /=5mm) were present in up to 11% of MA knees versus 1% rKA (p < 0 .001). Using the MA technique, for the flexion space ΔML, higher imbalance rates were created by the TEA technique (p < 0 .001). rKA again performed better than both MA techniques using TEA of 3 degrees PC techniques (p < 0 .001). When all the differences between ΔML and ΔFE are considered together: using TEA there were 40.8% of the knees with < 3 mm imbalances throughout, using PC this was 55.3% and using rKA it was 91.5% of the knees (p < 0 .001). Significantly less anatomic modifications with related ML or FE gap imbalances are created using rKA versus MA for TKA. Using rKA may help the surgeon to balance a TKA, whilst keeping the alignment within a safe range


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 52 - 52
1 Feb 2021
De Grave PW Luyckx T Claeys K Gunst P
Full Access

Purpose. Various alignment philosophies for total knee arthroplasty (TKA) have been described, all striving to achieve excellent long-term implant survival and good functional outcomes. In recent years, in search of higher functionality and patient satisfaction, a shift towards more patient-specific alignment is seen. Robotics is the perfect technology to tailor alignment. The purpose of this study was to describe ‘inverse kinematic alignment’ (iKA) technique, and to compare clinical outcomes of patients that underwent robotic-assisted TKA performed by iKA versus adjusted mechanical alignment (aMA). Methods. The authors analysed the records of a consecutive series of patients that received robotic assisted TKA with iKA (n=40) and with aMA (n=40). Oxford Knee Score (OKS) and satisfaction on a visual analogue scale (VAS) were collected at a follow-up of 12 months. Clinical outcomes were assessed according to patient acceptable symptom state (PASS) thresholds, and uni- and multivariable linear regression analyses were performed to determine associations of OKS and satisfaction with 6 variables (age, sex, body mass index (BMI), preoperative hip knee ankle (HKA) angle, preoperative OKS, alignment technique). Results. The iKA and aMA techniques yielded comparable outcome scores (p=0.069), with OKS respectively 44.6±3.5 and 42.2±6.3. VAS Satisfaction was better (p=0.012) with iKA (9.2±0.8) compared to aMA (8.5±1.3). The number of patients that achieved OKS and satisfaction PASS thresholds was significantly higher (p=0.049 and p=0.003, respectively) using iKA (98% and 80%) compared to aMA (85% and 48%). Knees with preoperative varus deformity, achieved significantly (p=0.025) better OKS using iKA (45.4±2.0) compared to aMA (41.4±6.8). Multivariable analyses confirmed better OKS (β=3.1; p=0.007) and satisfaction (β=0.73; p=0.005) with iKA. Conclusions. The results of this study suggest that iKA and aMA grant comparable clinical outcomes at 12-months follow-up, though a greater proportion of knees operated by iKA achieved the PASS thresholds for OKS and satisfaction. Notably. in knees with preoperative varus deformity, iKA yielded significantly better OKS and satisfaction than aMA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 87 - 87
23 Feb 2023
Orsi A Wakelin E Plaskos C McMahon S Coffey S
Full Access

Inverse Kinematic Alignment (iKA) and Gap Balancing (GB) aim to achieve a balanced TKA via component alignment. However, iKA aims to recreate the native joint line versus resecting the tibia perpendicular to the mechanical axis. This study aims to compare how two alignment methods impact 1) gap balance and laxity throughout flexion and 2) the coronal plane alignment of the knee (CPAK). Two surgeons performed 75 robotic assisted iKA TKA's using a cruciate retaining implant. An anatomic tibial resection restored the native joint line. A digital joint tensioner measured laxity throughout flexion prior to femoral resection. Femoral component position was adjusted using predictive planning to optimize balance. After femoral resection, final joint laxity was collected. Planned GB (pGB) was simulated for all cases posthoc using a neutral tibial resection and adjusting femoral position to optimize balance. Differences in ML balance, laxity, and CPAK were compared between planned iKA (piKA) and pGB. ML balance and laxity were also compared between piKA and final (fiKA). piKA and pGB had similar ML balance and laxity, with mean differences <0.4mm. piKA more closely replicated native MPTA (Native=86.9±2.8°, piKA=87.8±1.8°, pGB=90±0°) and native LDFA (Native=87.5±2.7°, piKA=88.9±3°, pGB=90.8±3.5°). piKA planned for a more native CPAK distribution, with the most common types being II (22.7%), I (20%), III (18.7%), IV (18.7%) and V (18.7%). Most pGB knees were type V (28.4%), VII (37.8%), and III (16.2). fiKA and piKA had similar ML balance and laxity, however fiKA was more variable in midflexion and flexion (p<0.01). Although ML balance and laxity were similar between piKA and pGB, piKA better restored native joint line and CPAK type. The bulk of pGB knees were moved into types V, VII, and III due to the neutral tibial cut. Surgeons should be cognizant of how these differing alignment strategies affect knee phenotype


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 95 - 95
1 Jan 2017
Rivière C Shah H Auvinet E Iranpour F Harris S Cobb J Howell S Aframian A
Full Access

Trochlear geometry of modern femoral implants is designed for mechanical alignment (MA) technique for TKA. The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique, this could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona. ®. implant (Zimmer, Warsaw, USA) is kinematically aligned. A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona. ®. prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics and Acrobot Modeller software, respectively. Persona. ®. implants were laser scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model. In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea. Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed. Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively. Kinematic alignment of Persona. ®. implants poorly restores native trochlear geometry. Its clinical impact remains to be defined


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 115 - 115
1 Mar 2017
Riviere C Shah H Howell S Aframian A Iranpour F Auvinet E Cobb J Harris S
Full Access

BACKGROUND. Trochlear geometry of modern femoral implants is designed for the mechanical alignment (MA) technique for Total Knee Arthroplasty (TKA). The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique. This could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona. ®. implant (Zimmer, Warsaw, USA) is kinematically aligned. METHODS. A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona. ®. prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics® and Acrobot Modeller® software, respectively. Persona. ®. implants were laser-scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model (figure 1). In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea (figure 2). Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed. RESULTS. Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively (figure 3). CONCLUSION. Kinematic alignment of Persona. ®. implants poorly restores native trochlear geometry. The clinical impact of this finding remains to be defined. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 11 - 11
1 Feb 2017
Harris S Dhaif F Iranpour F Aframian A Auvinet E Cobb J Howell S Riviere C
Full Access

BACKGROUND. Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction [1]. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction [1]. Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment. METHODS. The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects. Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments - (fig.1). Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured. RESULTS. In the coronal plane, the implant trochlear groove was oriented a mean of 8.7° more valgus (p<0.001) than the normal trochlea. The lateral facet was understuffed most at the proximal groove between 0–60% by a mean of 5.3 mm (p<0.001). The medial facet was understuffed by a mean of 4.4 mm between 0–60% (p<0.001) - (fig.2). CONCLUSIONS. Despite attempts to design femoral components with a more anatomical trochlea, there is significant understuffing of the trochlea, which could lead to reduced extensor moment of the quadriceps and contribute to patient dissatisfaction


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 57 - 57
1 Jan 2017
Harris S Dhaif F Iranpour F Aframian A Cobb J Auvinet E Howell S Rivière C
Full Access

Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction. Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment. The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects. Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments. Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured. In the coronal plane, the implant trochlear groove was oriented a mean of 8.7° more valgus (p<0.001) than the normal trochlea. The lateral facet was understuffed most at the proximal groove between 0–60% by a mean of 5.3 mm (p<0.001). The medial facet was understuffed by a mean of 4.4 mm between 0–60% (p<0.001). Despite attempts to design femoral components with a more anatomical trochlea, there is significant understuffing of the trochlea, which could lead to reduced extensor moment of the quadriceps and contribute to patient dissatisfaction


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 11 - 11
1 Feb 2020
Blakeney W Beaulieu Y Kiss M Vendittoli P
Full Access

Background. Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) introduce significant anatomic modifications and secondary ligament imbalances. A restricted kinematic alignment (rKA) protocol was proposed to minimize these issues and improve TKA clinical results. Method. rKA tibial and femoral bone resections were simulated on 1000 knee CT-Scans from a database of patients undergoing TKA. rKA is defined by the following criteria: Independent tibial and femoral cuts within ± 5° of the bone neutral mechanical axis and; a resulting HKA within ±3° of neutral. Medial-lateral (ΔML) and flexion-extension (ΔFE) gap differences were calculated and compared with measured resection MA results. Results. Extension space ML imbalances ≥3mm occurred in 33% of TKA with MA technique versus 8% with rKA, and ≥5mm were present in up to 11% of MA knees versus 1% rKA (p<0.001). Using the MA technique, for the flexion space, higher ML imbalance rates were created by both MA techniques (using TEA or 3°PC) versus rKA (p<0.001). When all the differences between ΔML and ΔFE are considered together: using MA with TEA there were 41% of the knees with <3mm imbalances throughout; using PC this was 55% and using rKA it was 92% (p<0.001). Conclusion. Significantly less ML or FE gap imbalances are created using rKA versus MA for TKA. Using rKA may help the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 53 - 53
1 Nov 2018
Karia M Ali A Harris S Abel R Cobb J
Full Access

Tibial bone density may affect implant stability and functional outcomes following total knee replacement (TKR). Our aim was to characterise the bone density profile at the implant-tibia interface following TKR in mechanical versus kinematic alignment. Pre-operative computed tomography scans for 10 patients were obtained. Using surgical planning software, tibial cuts were made for TKR either neutral (mechanical) or 3 degrees varus (kinematic) alignment. Signal intensity, in Hounsfield Units (HU), was measured at 25,600 points throughout an axial slice at the implant-tibia interface and density profiles compared along defined radial axes from the centre of the tibia towards the cortices. From the tibial centre towards the lateral cortex, trabecular bone density for kinematic and mechanical TKR are similar in the inner 50% but differ significantly beyond this (p= 0.012). There were two distinct density peaks, with peak trabecular bone density being higher in kinematic TKR (p<0.001) and peak cortical bone density being higher in mechanical TKR (p<0.01). The difference in peak cortical to peak trabecular signal was 43 HU and 185 HU respectively (p<0.001). On the medial side there was no significant difference in density profile and a linear increase from centre to cortex. In the lateral proximal tibia, peak cortical and peak trabecular bone densities differ between kinematic TKR and mechanical TKR. Laterally, mechanical TKR may be more dependent upon cortical bone for support compared to kinematic TKR, where trabecular bone density is higher. This may have implications for surgical planning and implant design


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 124 - 124
1 Apr 2019
Karia M Ali A Harris S Abel R Cobb J
Full Access

Background. Defining optimal coronal alignment in Total Knee Replacement (TKR) is a controversial and poorly understood subject. Tibial bone density may affect implant stability and functional outcomes following TKR. Our aim was to compare the bone density profile at the implant-tibia interface following TKR in mechanical versus kinematic alignment. Methods. Pre-operative CT scans for 10 patients undergoing medial unicompartmental knee arthroplasty were obtained. Using surgical planning software, tibial cuts were made for TKR with 7 degrees posterior slope and either neutral (mechanical) or 3 degrees varus (kinematic) alignment. Signal intensity, in Hounsfield Units (HU), was measured at 25,600 points throughout an axial slice at the implant-tibia interface and density profiles compared along defined radial axes from the centre of the tibia towards the cortices (Hotelling's t-squared and paired t-test). Results. From the tibial centre towards the lateral cortex, trabecular bone density for kinematic and mechanical TKR are similar in the inner 50% but differ significantly beyond this (p= 0.012). There were two distinct density peaks, with peak trabecular bone density being higher in kinematic TKR (p<0.001) and peak cortical bone density being higher in mechanical TKR (p<0.01). The difference in peak cortical to peak trabecular signal was 43 HU and 185 HU respectively (p<0.001). On the medial side there was no significant difference in density profile and a linear increase from centre to cortex. Conclusions. In the lateral proximal tibia, there is significantly less difference between peak cortical and peak trabecular bone densities in kinematic TKR compared to mechanical TKR. Laterally, mechanical TKR may be more dependent upon cortical bone for support compared to kinematic TKR, where trabecular bone density is higher. This may have implications for surgical planning and implant design


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 64 - 64
1 Jan 2016
Ishikawa M Kuriyama S Furu M Matsuda S
Full Access

Objective. Kinematically aligned total knee arthroplasty (TKA) is of increasing interest because this method may improve patient satisfaction. However, the biomechanics of kinematically aligned TKA remain largely unknown. Therefore, we analyzed whether the kinematic alignment method cause to increase the contact force on patellofemoral and tibiofemoral joints. Methods. A musculoskeletal computer simulation was used to determine the effects of kinematically or mechanically aligned TKA. Patellofemoral and tibiofemoral contact forces were examined for a mechanically aligned model and a kinematically aligned model using finite element analysis. Results. The peak contact stress on the patellofemoral joint in the kinematically aligned model was greater than that in the mechanically aligned model at 30° and 60°. Maximum peak contact stress was found at 30° flexion in the kinematically aligned model (73 MPa) and this was 221% higher than the stress in the mechanically aligned model (33 MPa). Similarly, peak contact stress of 33.0 MPa at 60° flexion occurred in the kinematically aligned model and this was 114% higher than that in the mechanically aligned model (29 MPa). The peak contact stress on the tibiofemoral joint in the kinematically aligned model was greater than that in the mechanically aligned model at 30°, 60° and 90° flexion. Maximum peak contact stress was found at 30° flexion in the kinematically aligned model (22 MPa) and this was 200% higher than the stress in the mechanically aligned model (11 MPa). Conclusions. Kinematically aligned TKA may have increased risks for implant longevity. Therefore, a strict surgical indication, including age and implant design, is needed to achieve excellent longevity after kinematically aligned TKA