Advertisement for orthosearch.org.uk
Results 1 - 20 of 1716
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 24 - 30
1 Jun 2020
Livermore AT Erickson JA Blackburn B Peters CL

Aims. A significant percentage of patients remain dissatisfied after total knee arthroplasty (TKA). The aim of this study was to determine whether the sequential addition of accelerometer-based navigation for femoral component preparation and sensor-guided ligament balancing improved complication rates, radiological alignment, or patient-reported outcomes (PROMs) compared with a historical control group using conventional instrumentation. Methods. This retrospective cohort study included 371 TKAs performed by a single surgeon sequentially. A historical control group, with the use of intramedullary guides for distal femoral resection and surgeon-guided ligament balancing, was compared with a group using accelerometer-based navigation for distal femoral resection and surgeon-guided balancing (group 1), and one using navigated femoral resection and sensor-guided balancing (group 2). Primary outcome measures were Patient-Reported Outcomes Measurement Information System (PROMIS) and Knee injury and Osteoarthritis Outcome (KOOS) scores measured preoperatively and at six weeks and 12 months postoperatively. The position of the components and the mechanical axis of the limb were measured postoperatively. The postoperative range of motion (ROM), haematocrit change, and complications were also recorded. Results. There were 194 patients in the control group, 103 in group 1, and 74 in group 2. There were no significant differences in baseline demographics between the groups. Patients in group 2 had significantly higher baseline mental health subscores than control and group 1 patients (53.2 vs 50.2 vs 50.2, p = 0.041). There were no significant differences in any PROMs at six weeks or 12 months postoperatively (p > 0.05). There was no difference in the rate of manipulation under anaesthesia (MUA), complication rates, postoperative ROM, or blood loss. There were fewer mechanical axis outliers in groups 1 and 2 (25.2%, 14.9% respectively) versus control (28.4%), but this was not statistically significant (p = 0.10). Conclusion. The sequential addition of navigation of the distal femoral cut and sensor-guided ligament balancing did not improve short-term PROMs, radiological outcomes, or complication rates compared with conventional techniques. The costs of these added technologies may not be justified. Cite this article: Bone Joint J 2020;102-B(6 Supple A):24–30


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 261 - 266
1 Feb 2017
Laitinen MK Parry MC Albergo JI Grimer RJ Jeys LM

Aims. Due to the complex anatomy of the pelvis, limb-sparing resections of pelvic tumours achieving adequate surgical margins, can often be difficult. The advent of computer navigation has improved the precision of resection of these lesions, though there is little evidence comparing resection with or without the assistance of navigation. Our aim was to evaluate the efficacy of navigation-assisted surgery for the resection of pelvic bone tumours involving the posterior ilium and sacrum. . Patients and Methods. Using our prospectively updated institutional database, we conducted a retrospective case control study of 21 patients who underwent resection of the posterior ilium and sacrum, for the treatment of a primary sarcoma of bone, between 1987 and 2015. The resection was performed with the assistance of navigation in nine patients and without navigation in 12. We assessed the accuracy of navigation-assisted surgery, as defined by the surgical margin and how this affects the rate of local recurrence, the disease-free survival and the effects on peri-and post-operative morbidity. . Results. The mean age of the patients was 36.4 years (15 to 66). The mean size of the tumour was 10.9 cm. In the navigation-assisted group, the margin was wide in two patients (16.7%), marginal in six (66.7%) and wide-contaminated in one (11.1%) with no intralesional margin. In the non-navigated-assisted group; the margin was wide in two patients (16.7%), marginal in five (41.7%), intralesional in three (25.0%) and wide-contaminated in two (16.7%). Local recurrence occurred in two patients in the navigation-assisted group (22.2%) and six in the non-navigation-assisted group (50.0%). The disease-free survival was significantly better when operated with navigation-assistance (p = 0.048). The blood loss and operating time were less in the navigated-assisted group, as was the risk of a foot drop post-operatively. Conclusion . The introduction of navigation-assisted surgery for the resection of tumours of the posterior ilium and sacrum has increased the safety for the patients and allows for a better oncological outcome. . Cite this article: Bone Joint J 2017;99-B:261–6


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims. Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery. Methods. A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed. Results. The greatest gains in productivity were in avoiding repeat intraoperative scans (a mean of 248 minutes for patients who had two scans, and a mean 180 minutes for those who had a single scan). Optimizing accuracy was the biggest factor influencing this, which was reliant on incremental changes to the operating setup and technique. Conclusion. The application of lean principles to the introduction of ION for AIS surgery helps assimilate this method into the environment of the operating theatre. Data and stakeholder analysis identified a reproducible technique for using ION for AIS surgery, reducing operating time, and radiation exposure. Cite this article: Bone Joint J. 2020;102-B(1):5–10


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 696 - 702
1 May 2016
Theologis AA Burch S Pekmezci M

Aims. We compared the accuracy, operating time and radiation exposure of the introduction of iliosacral screws using O-arm/Stealth Navigation and standard fluoroscopy. Materials and Methods. Iliosacral screws were introduced percutaneously into the first sacral body (S1) of ten human cadavers, four men and six women. The mean age was 77 years (58 to 85). Screws were introduced using a standard technique into the left side of S1 using C-Arm fluoroscopy and then into the right side using O-Arm/Stealth Navigation. The radiation was measured on the surgeon by dosimeters placed under a lead thyroid shield and apron, on a finger, a hat and on the cadavers. Results. There were no neuroforaminal breaches in either group. The set-up time for the O-Arm was significantly longer than for the C-Arm, while total time for placement of the screws was significantly shorter for the O-Arm than for the C-Arm (p = 0.001). The mean absorbed radiation dose during fluoroscopy was 1063 mRad (432.5 mRad to 4150 mRad). No radiation was detected on the surgeon during fluoroscopy, or when he left the room during the use of the O-Arm. The mean radiation detected on the cadavers was significantly higher in the O-Arm group (2710 mRem standard deviation (. sd. ) 1922) than during fluoroscopy (11.9 mRem . sd 14.8). (p < 0.01). Conclusion. O-Arm/Stealth Navigation allows for faster percutaneous placement of iliosacral screws in a radiation-free environment for surgeons, albeit with the same accuracy and significantly more radiation exposure to cadavers, when compared with standard fluoroscopy. Take home message: Placement of iliosacral screws with O-Arm/Stealth Navigation can be performed safely and effectively. Cite this article: Bone Joint J 2016;98-B:696–702


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1234 - 1240
1 Sep 2012
Willcox NMJ Clarke JV Smith BRK Deakin AH Deep K

We compared lower limb coronal alignment measurements obtained pre- and post-operatively with long-leg radiographs and computer navigation in patients undergoing primary total knee replacement (TKR). A series of 185 patients had their pre- and post-implant radiological and computer-navigation system measurements of coronal alignment compared using the Bland-Altman method. The study included 81 men and 104 women with a mean age of 68.5 years (32 to 87) and a mean body mass index of 31.7 kg/m. 2. (19 to 49). Pre-implant Bland–Altman limits of agreement were -9.4° to 8.6° with a repeatability coefficient of 9.0°. The Bland–Altman plot showed a tendency for the radiological measurement to indicate a higher level of pre-operative deformity than the corresponding navigation measurement. Post-implant limits of agreement were -5.0° to 5.4° with a repeatability coefficient of 5.2°. The tendency for valgus knees to have greater deformity on the radiograph was still seen, but was weaker for varus knees. . The alignment seen or measured intra-operatively during TKR is not necessarily the same as the deformity seen on a standing long-leg radiograph either pre- or post-operatively. Further investigation into the effect of weight-bearing and surgical exposure of the joint on the mechanical femorotibial angle is required to enable the most appropriate intra-operative alignment to be selected


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 77 - 77
1 Apr 2019
Sawada N Yabuno K Ikeda S Kanazawa M
Full Access

INTRODUCTION. In gap balancing technique, we decided the femoral component rotation according to the ligament balance in flexion. Component and limb alignment are important considerations during TKA. Three-dimensional positioning of TKA implants and exact mechanical axis has an effect on implant loosening, polyethylene stresses, and gait. According to the recent report, the navigation system made it possible to achieve aligned implants more than conventional TKA. Hybrid Navigation technique which is our procedure is combination of navigation system and modified gap technique. In other words, exact mechanical axis is gained by navigation system, stable stability of knee joint is gained by modified gap technique. PURPOSE. The purpose of this study is to carry out clinical evaluation and image evaluation of the patients who underwent hybrid navigation technique TKA. METHODS. We performed TKA using the hybrid navigation technique in 100 knees from April 2012 to April 2015. We evaluated hybrid navigation TKA which we were able to follow up more than five years. 33 knees were available for follow up. We investigated the mid-term results of TKA after a mean follow up period of 5 years and 8 months. We evaluated range of motion(ROM), Japan Orthopaedic Association (JOA)score, complications, revision rate as clinical evaluations. And we evaluated radiolucent line(RLL), loosening in X-ray, implantation accuracy in computed tomography(CT) as image evaluations. Surgical technique was that the knees were exposed using a medial parapatellar approach without patella turnover, and the anterior and posterior cruciate ligaments were resected. And next osteotomy distal femur and proximal tibia using CT-free Navigation, step-wise medial soft tissue release was performed to make the rectangular extension joint gap using gap tensor space (off set balancer) at 40 pounds of distraction force. Flextion gap was made at the same distraction force, thereby we determined external rotation angle of femur osteotomy in a patella reduction position. CT of the whole leg was taken preoperation and postoperation the first postoperative week in all cases. RESULTS. In CT evaluation, coronal and sagittal alignments of femoral componet were mean 90.92° and mean flex 3.02°. These alignment of tibial componet were 90.54° and mean posterior slope 3.0°. Outliers(>3°)of coronal aligment were 6% (2 knees)in femoral componet, and 6%(2 knees) in tibial componet. In clinical evaluation, mean preoperative ROM(flex) was 105 degrees which improved 122 degrees at final follow up. Mean preoperative JOA score was 46.3 which improved 85.8 at final follow up. In image evaluation, there were no incidence of component loosening(RLL>2mm). We experienced two complications(1 deep infection and 1 intraoperative fracture), but there were no postoperative fracture and DVT/PE. The revision arte was 3%(1 knee) due to deep infection. DISCUSSION AND CONCLUSION. Mid-term postoperative results has shown a good prognosis. We will not understand that we do not observe long-term results in future, neverthless we believe that this technique should be considered as an alternative means of conducting TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 53 - 53
1 Feb 2017
Kawamoto T Iida S Suzuki C
Full Access

Background. Variability in component alignment continues to be a major in total knee arthroplasty(TKA). In the long term, coronal plane malalignment has been associated with an increased risk of loosening, insatability, and wear. Recently portable navigation system(PNS) in TKA have been introduced. The goal of PNS are to improve the accuracy of post operative alignment and eliminate outlier cases. The aim of this study is to evaluate clinical results and quantify the coronal plane alignment between a group of patients who underwent TKA using PNS versus CT-free large-console navigation system. Patients and Method. An unselected consecutive series of ninety-four patients undergoing primary TKA using the cruciate retaining cemented total knee system between April 2012 and August 2015 were studied. Patients were included only if they were deemed to be candidates for a Cruciate retaining TKA. Patients were excluded if they had a flexion contracture greater than 40°, or severe valgus or varus deformity. Forty eight knees was operated a TKA with CT-free large-console navigation system(The OrthoPilot system; Aesculap, Tuttlingen, Germany). Subsequently forty six knees was received a TKA using portable navigation system (KneeAlign2. TM. ). Postoperatively standing AP hip-to-ankle radiographs were obtained, from which the lower extremity mechanical axis, component angle were measured. The alignment goals were a neutral mechanical axis defined as a hip-to-ankle angle of 0°with the femoral and tibial components aligned perpendicular to the mechanical axis. The total operating time were quantified utilising an operating room database. The total operating time between TKAs performed with CT-free navigation system and those performed with portable navigation system was compared in each group. All patients postoperatively was evaluated of clinical results the Japan Orthopedics Association(JOA) Knee scores. Results. The mechanical axis angle in PNS group was 0.8°, while the CT-free navigation system group was 1.6°and there was no statistical significance. The number of outliers for mechanical axis angle was PNS group 39.1%, the large-console navigation group 22.9%, between the two groups there was statistical significance. The operative time in PNS was 130.0 minutes and significantly less compared to the time of the large-console group 150.4 minutes. The JOA Knee score of navigation group was 83.9 points, and the score of PNS group was 81.0 points., there was no statistical significance between the two groups on the clinical score. Conclusion. portable navigation system improved operative time in TKA, this study demonstrates portable navigation system to obtain same angle of overall mechanical axis angle as large-console group navigation system


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 17 - 17
1 May 2016
Sawada N Yabuno K Kanazawa M
Full Access

INTRODUCTION. Soft-tissue balancing of the knee is fundamental to the success of total knee arthroplasty(TKA). Preparing rectangular extension and flexion joint gaps in the most important goal in TKA, because it facilitates functional stability of the knee. In gap balancing technique, we decided the femoral component rotation according to the ligament balance in flexion. Component and limb alignment are important considerations during TKA. Three-dimensional positioning of TKA implants and exact mechanical axis has an effect on implant loosening, polyethylene stresses, and gait. According to the recent reports, the navigation system made it possible to achieve aligned implants more than conventional TKA. Hybrid Navigation technique which is our procedure is combination of navigation system and modified gap technique. In other words, exact mechanical axis is gained by navigation system, stable stability of knee joint is gained by modified gap technique. PURPOSE. The purpose of this study is to carry out clinical evaluation and image assenssment using computed tomography (CT) of the patients who underwent hybrid navigation technique TKA. METHODS. We performed TKA using the hybrid navigation technique in 100 knees from April 2012. Surgical technique was that the knees were exposed using a medial parapatellar approach without patella turnover, and the anterior and posterior cruciate ligaments were resected. And next osteotomy distal femur and proximal tibia using CT-free Navigation, step-wise medial soft tissue release was performed to make the rectangular extension joint gap using gap tensor space(off set balancer) at 40 pounds of distraction force. Flextion gap was made at the same distraction force, thereby we determined external rotation angle of femur osteotomy in a patella reduction position. See Figure 1. CT of the whole leg was taken preoperation and postoperation in all cases. RESULTS. Coronal and sagittal alignments of femoral componet angle were mean 91.05° and mean flex anglewere 2.98°. These alignment of tibial componet angle were 91.08° and mean posterior slope angle were 3.38°. Outliers(>3°)of coronal aligment were 9% in femoral componet, and 8% in tibial componet. Mean operation times(skin incision to skin closure) were 108 minutes. We experienced two complications(1 deep infection and 1 peroneal nerve palsy), but there were no intraoperative fracture, postoperative fracture and DVT/PE. DISCUSSION AND CONCLUSION. 100 patients underwent hybrid navigation TKA which has advantage of both navigation and gap technique. CT assessment of components has shown good results. (outlier>3°femoral component: 9%, tibial component 8%) Short-term postoperative results has shown a good prognosis. We will not understand that we do not observe long-term results in future, neverthless we believe that this technique should be considered as an alternative means of conducting TKA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 105 - 105
10 Feb 2023
Xu J Veltman W Chai Y Walter W
Full Access

Navigation in total hip arthroplasty has been shown to improve acetabular positioning and can decrease the incidence of mal-positioned acetabular components. The aim of this study was to assess two surgical guidance systems by comparing intra-operative measurements of acetabular component inclination and anteversion with a post-operative CT scan. We prospectively collected intra-operative navigation data from 102 hips receiving conventional THA or hip resurfacing arthroplasty through either a direct anterior or posterior approach. Two guidance systems were used simultaneously: an inertial navigation system (INS) and optical navigation system (ONS). Acetabular component anteversion and inclination was measured on a post-operative CT. The average age of the patients was 64 years (range: 24-92) and average BMI was 27 kg/m. 2. (range 19-38). 52% had hip surgery through an anterior approach. 98% of the INS measurements and 88% of the ONS measurements were within 10° of the CT measurements. The mean (and standard deviation) of the absolute difference between the post-operative CT and the intra-operative measurements for inclination and anteversion were 3.0° (2.8) and 4.5° (3.2) respectively for the ONS, along with 2.1° (2.3) and 2.4° (2.1) respectively for the INS. There was significantly lower mean absolute difference to CT for the INS when compared to ONS in both anteversion (p<0.001) and inclination (p=0.02). Both types of navigation produced reliable and reproducible acetabular cup positioning. It is important that patient-specific planning and navigation are used together to ensure that surgeons are targeting the optimal acetabular cup position. This assistance with cup positioning can provide benefits over free-hand techniques, especially in patients with an altered acetabular structure or extensive acetabular bone loss. In conclusion, both ONS and INS allowed for adequate acetabular positioning as measured on postoperative CT, and thus provide reliable intraoperative feedback for optimal acetabular component placement


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 456 - 457
1 Nov 2011
Garvin KL Barrera OA Haider H
Full Access

Computer aided orthopaedic surgical (CAOS) technology has been around for over 20 years, and while it appears to provide better outcomes compared to conventional jigs, less than 1% of orthopaedic surgeons in USA have adopted it. This study surveyed the arguments against CAOS usage, highlighting those reasons which may continue to prevent CAOS from becoming truly widely accepted. The survey has identified several concerns with navigation systems. For example, the pin tracts from navigation reference frames cause stress risers that increase the risk of bone fracture and soft tissue/muscle damage. Additionally, infrared trackers take footprint space (as they require line of sight access to the tracking camera), increase risk of infection, and present a potential distraction to the surgical team. With current CAOS systems, even more nstrumentation is needed than with non-navigated surgical systems, and it is arguable that navigation makes surgery more complex, requiring a knowledge of anatomic landmarks, an increased number of tasks prior to and during surgery, and an assortment of different and perhaps unfamiliar instruments. These complexities very likely result in a slow learning curve on current CAOS systems, a learning curve that is mostly not started by the majority of surgeons. Other items of concern are the accuracy of morphed/generated bones in imageless systems (and how these models assume non-deformed anatomy), inaccuracies or distortion of the measurements (operating room lighting interfering with infrared trackers or field deformation of electromagnetic systems due to ferromagnetic instruments at the surgical site) and computer reliability. Considering the high cost (or low cost-effectiveness) of integrating CAOS into arthroplasty, and the lack of enough studies documenting truly better long term clinical results or fewer actual complications, it is evident why navigation is not yet a popular option for TKR. As a result of the critical findings from this study, it is our view that any successful new technique/tool in surgery should make the overall procedure easier, faster, cheaper and better (or at least equally as good) as the current techniques. While robotic surgery seems to be re-emerging, we hypothesize that the next real breakthrough will come from newer more utilitarian light weight small foot print technologies actuated by surgeons themselves, with enhanced computer guidance that will allow them to reduce instrumentation, complexity, and surgical time such as navigated free-hand bone cutting. Alternative navigation technologies (e.g. UWB 3D positioning radar) where line of sight becomes less crucial, image based systems (rather than image free), artificial vision, and smart instrumentation are likely to play a major role in achieving widespread future acceptance of CAOS in TKR


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 394 - 394
1 Sep 2009
Seon J Song E Park S Cho S Cho S Yoon T
Full Access

Correct alignment of the leg and positioning of the implant has shown to be an important factor in the successful long term outcome of total knee arthroplasty and navigation systems enable an accuracy of corrections and alignment within intervals of 1 mm or 1 degree. This study is to test if there is any discrepancy in accuracy which was sometimes observed in clinical trials between Orthopilot (Aesculap, Tuttlingen, German) and AxiEM (Medtronic Navigation, CoalCreek, Colo., USA). A synthetic bone model (Sawbones, Pacific Laboratories, Vashon, Washington) including pelvis and leg with mobile joint made up of titanium which does not affect the electromagnetic field was constructed. Mechanical axis was checked by ORTHODOC system (Integrated Surgical System, CA, USA) that is a preplanning system for ROBODOC (ISS, CA, USA) assisted total knee arthroplasty (TKA) and total hip arthroplasty (THA). The CT images were scanned with 1.25 mm or less slice interval. The CT images were converted to 3-dimensional (3D) volume-rendered model in ORTHODOC. Two orthopaedic surgeons measured it ten times independently. For the measurement of mechanical axis using navigation, 4 orthopaedic surgeons (two experts having more than 100 navigation experiences and two residents) registered anatomical landmarks and kinematic center of bone model ten times using Orthopilot as well as AxiEM. After that, one surgeon intentionally registered the wrong anatomical landmarks (10 mm medial and lateral to the center of distal femur, proximal tibial and ankle, and both malleoli) in both navigation system and observed the change of mechanical axis. True mechanical axis was varus 1.25° using Orthodoc, Orthopilot displayed varus 1.10±0.64° and AxiEM did varus 1.78±0.79°. The difference of mechanical axis between two navigations was not observed (P=0.12) and there were no intra and inter-observer variation in statistical analysis (Correlation=0.934, P=0.00). In the case of erroneous identification of the anatomical landmarks, Orthipilot showed much less variation compared to AxiEM. AxiEM altered the mechanical axis more in palpating center of the distal femur and ankle center and Orthopilot did in palpating the center of ankle. Both navigation systems provide high accuracy and reproducibility of mechanical axis of lower limb in experimental condition. But both were affected by the wrong identification of the anatomical landmarks. AxiEM had more variations. So surgeon should pay attention to register the precise anatomical landmarks


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 62 - 62
23 Jun 2023
Inaba Y Tezuka T Choe H Ike H
Full Access

Rotational acetabular osteotomy (RAO), one of periacetabular osteotomies, is an effective joint-preserving surgical treatment for developmental dysplasia of the hip. Since 2013, we have been using a CT-based navigation for RAO to perform safe and accurate osteotomy. CT-based navigation allows precise osteotomy during surgery but cannot track the bony fragment after osteotomy. Thus, it is an issue to achieve successful reorientation in accordance with preoperative planning. In this presentation, we introduce a new method to achieve reorientation and evaluate its accuracy. Thirty joints in which CT-based navigated RAO was performed were included in this study. For the first 20 joints, reorientation was confirmed by tracing the lateral aspect of rotated fragment with navigation and checked if it matched with the preoperative planning. For the latter 10 joints, a new method was adopted. Four fiducial points were made on lateral side of the acetabulum in the preoperative 3-dimensional model and intraoperatively, rotation of the osteotomized bone was performed so that the 4 fiducial points match the preoperative plan. To assess the accuracy of position of rotated fragment in each group, preoperative planning and postoperative CT were compared. A total of 24 radial reformat images of postoperative CT were obtained at a half-hour interval following the clockface system around the acetabulum. In every radial image, femoral head coverage of actual postop- and planned were measured to evaluate the accuracy of acetabular fragment repositioning. The 4-fiducial method significantly reduced the reorientation error. Especially in the 12:00 to 1:00 position of the acetabulum, there were significantly fewer errors (p<0.01) and fewer cases with under-correction of the lateral acetabular coverage. With the new method with 4 reference fiducials, reorientation of the acetabulum could be obtained as planned with lesser errors


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 339 - 339
1 Mar 2013
Nam D Weeks D Reinhardt K Nawabi DH Cross MB Mayman DJ Su E
Full Access

Introduction. Computer assisted surgery (CAS) systems have been shown to improve alignment accuracy in total knee arthroplasty (TKA), yet concerns regarding increased costs, operative times, pin sites, and the learning curve associated with CAS techniques have limited its widespread acceptance. The purpose of this study was to compare the alignment accuracy of an accelerometer-based, portable navigation device (KneeAlignÒ 2) to a large console, imageless CAS system (AchieveCAS). Our hypothesis is that no significant difference in alignment accuracy will be appreciated between the portable, accelerometer-based system, and the large-console, imageless navigation system. Methods. 62 consecutive patients, and a total of 80 knees, received a posterior cruciate substituting TKA using the Achieve CAS computer navigation system. Subsequently, 65 consecutive patients, and a total of 80 knees, received a posterior cruciate substituting TKA using the KneeAlignÒ 2 to perform both the distal femoral and proximal tibial resections (femoral guide seen in Figure 1, and tibial guide seen in Figure 2). Postoperatively, standing AP hip-to-ankle radiographs were obtained for each patient, from which the lower extremity mechanical axis, tibial component varus/valgus mechanical alignment, and femoral component varus/valgus mechanical alignment were digitally measured. Each measurement was performed by two, blinded independent observers, and interclass correlation for each measurement was calculated. All procedures were performed using a thigh pneumatic tourniquet, and the total tourniquet time for each procedure was recorded. Results. In the KneeAlignÒ 2 cohort, 92.5% of patients had an alignment within 3° of a neutral mechanical axis (vs. 86.3% with AchieveCAS, p<0.01), 96.2% had a tibial component alignment within 2° of perpendicular to the tibial mechanical axis (vs. 97.5% with AchieveCAS, p=0.8), and 94.9% had a femoral component alignment within 2° of perpendicular to the femoral mechanical axis (vs. 92.5% with AchieveCAS, p<0.01). The mean tourniquet time in the KneeAlignÒ 2 cohort was 48.1 + 10.2 minutes, versus 54.1 + 10.5 in the AchieveCAS cohort (p<0.01). The interclass correlation coefficient for measurement of the postoperative tibial alignment was 0.92, for femoral alignment was 0.85, and for overall lower extremity alignment was 0.94. Conclusion. Accelerometer-based, portable navigation can provide the same degree of alignment accuracy as large console, imageless CAS system in TKA, while also decreasing operative times. The KneeAlignÒ 2 successfully combines the benefits and accuracy of large-console, CAS systems, while avoiding the use of extra pin sites, decreasing operative times, and providing a level of familiarity with conventional alignment methods


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 64 - 64
10 Feb 2023
Lourens E Kurmis A Harries D de Steiger RN
Full Access

Total hip arthroplasty (THA) is an effective treatment for symptomatic hip osteoarthritis (OA). While computer-navigation technologies in total knee arthroplasty show survivorship advantages and are widely used, comparable applications within THA show far lower utilisation. Using national registry data, this study compared patient reported outcome measures (PROMs) in patients who underwent THA with and without computer navigation. Data from Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) PROMs program included all primary THA procedures performed for OA up to 31 December 2020. Procedures using the Intellijoint HIP® navigation system were identified and compared to procedures using other computer navigation systems or conventional instrumentation only. Changes in PROM scores between pre-operative and 6-month post-operative time points were analysed using multiple regression model, adjusting for pre-operative score, patient age, gender, ASA score, BMI, surgical approach, and hospital type. There were 65 primary THA procedures that used the Intellijoint HIP® system, 90 procedures used other types of computer navigation, and the remaining 5,284 primary THA procedures used conventional instrumentation. The estimated mean changes in the EuroQol visual analogue scale (EQ VAS) score and Oxford Hip score did not differ significantly when Intellijoint® was compared to conventional instruments (estimated differences of 2.4, 95% CI [-1.7, 6.5], p = 0.245, and −0.5, 95% CI [-2.5, 1.4], p = 0.592, respectively). The proportion of patients who were satisfied with their procedure was also similar when Intellijoint® was compared to conventional instruments (rate ratio 1.06, 95% CI [0.97, 1.16], p = 0.227). The preliminary data demonstrate no significant difference in PROMs when comparing the Intellijoint HIP® THA navigation system with both other navigation systems and conventional instrumentation for primary THAs performed for OA. Level of evidence: III (National registry analysis)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 5 - 5
1 Jun 2021
Muir J Dundon J Paprosky W Schwarzkopf R Barlow B Vigdorchik J
Full Access

Introduction. Re-revision due to instability and dislocation can occur in up to 1 in 4 cases following revision total hip arthroplasty (THA). Optimal placement of components during revision surgery is thus critical in avoiding re-revision. Computer-assisted navigation has been shown to improve the accuracy and precision of component placement in primary THA; however, its role in revision surgery is less well documented. The purpose of our study was to evaluate the effect of computer-assisted navigation on component placement in revision total hip arthroplasty, as compared with conventional surgery. Methods. To examine the effect of navigation on acetabular component placement in revision THA, we retrospectively reviewed data from a multi-centre cohort of 128 patients having undergone revision THA between March 2017 and January 2019. An imageless computer navigation device (Intellijoint HIP®, Intellijoint Surgical, Kitchener, ON, Canada) was utilized in 69 surgeries and conventional methods were used in 59 surgeries. Acetabular component placement (anteversion, inclination) and the proportion of acetabular components placed in a functional safe zone (40° inclination/20° anteversion) were compared between navigation assisted and conventional THA groups. Results. Mean inclination decreased post-operatively versus baseline in both the navigation (44.9°±12.1° vs. 43.0°±6.8°, p=0.65) and control (45.8°±19.4° vs. 42.8°±7.1°, p=0.08) groups. Mean anteversion increased in both study groups, with a significant increase noted in the navigation group (18.6°±8.5° vs. 21.6°±7.8°, p=0.04) but not in the control group (19.4°±9.6° vs. 21.2°±9.8°, p=0.33). Post-operatively, a greater proportion of acetabular components were within ±10° of a functional target (40° inclination, 20° anteversion) in the navigation group (inclination: 59/67 (88%), anteversion: 56/67 (84%)) than in the control group (49/59 (83%) and 41/59, (69%), respectively). Acetabular component precision in both study groups improved post-operatively versus baseline. Variance in inclination improved significantly in both control (50.6° vs. 112.4°, p=0.002) and navigation (46.2° vs. 141.1°, p<0.001) groups. Anteversion variance worsened in the control group (96.3° vs. 87.6°, p=0.36) but the navigation group showed improvement (61.2° vs. 72.7°, p=0.25). Post-operative variance amongst cup orientations in the navigation group (IN: 46.2°; AV: 61.2°) indicated significantly better precision than that observed in the control group (IN: 50.6°, p=0.36; AV: 96.3°, p=0.04). Discussion. Re-revision is required in up to 25% of revision THA cases, of which 36% are caused by instability. This places a significant burden on the health care system and highlights the importance of accurate component placement. Our data indicate that the use of imageless navigation in revision THA – by minimizing the likelihood of outliers – may contribute to lower rates of re-revision by improving component orientation in revision THA. Conclusion. Utilizing imageless navigation in revision THAs results in more consistent placement of the acetabular component as compared to non-navigated revision surgeries


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 4 - 4
1 Jun 2021
Jenny J Banks S Baldairon F
Full Access

INTRODUCTION. The restoration of physiological kinematics is one of the goals of a total knee arthroplasty (TKA). Navigation systems have been developed to allow an accurate and precise placement of the implants. But its application to the intraoperative measurement of knee kinematics has not been validated. The hypothesis of this study was that the measurement of the knee axis, femoral rotation, femoral translation with respect to the tibia, and medial and lateral femorotibial gaps during continuous passive knee flexion by the navigation system would be different from that by fluoroscopy taken as reference. MATERIAL – METHODS. Five pairs of knees of preserved specimens were used. The e.Motion FP ® TKA (B-Braun Aesculap, Tuttlingen, Germany) was implanted using the OrthoPilot TKA 4.3 version and Kobe version navigation system (B-Braun Aesculap, Tuttlingen, Germany). Kinematic recording by the navigation system was performed simultaneously with fluoroscopic recording during a continuous passive flexion-extension movement of the prosthetic knee. Kinematic parameters were extracted from the fluoroscopic recordings by image processing using JointTrack Auto ® software (University of Florida, Gainesville, USA). The main criteria were the axis of the knee measured by the angle between the center of the femoral head, the center of the knee and the center of the ankle (HKA), femoral rotation, femoral translation with respect to the tibia, and medial and lateral femorotibial gaps. The data analysis was performed by a Kappa correlation test. The agreement of the measurements was assessed using the intraclass correlation coefficient (ICC) and its 95% confidence interval. RESULTS. The respective CCIs were as follows: HKA angle 0.839 [0.820; 0.856]; femoral translation 0.560 [0.517; 0.600]; femoral rotation 0.652 [0.616; 0.686]; medial femorotibial gap 0.905 [0.894; 0.916]; lateral femorotibial gap 0.767 [0.740; 0.791]. DISCUSSION. Measurements of TKA kinematics by the navigation system and by fluoroscopy were consistent for HKA angle and medial and lateral femorotibial gaps, but not for femoral translation and femoral rotation. These differences can be explained by a methodological bias. At the end of this work, the specific navigation system cannot be considered as a reliable instrument for measuring the kinematics of a TKA


Bone & Joint Open
Vol. 3, Issue 6 | Pages 475 - 484
13 Jun 2022
Jang SJ Vigdorchik JM Windsor EW Schwarzkopf R Mayman DJ Sculco PK

Aims. Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error. Methods. A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (. Δ. sacral slope(SS). stand-sit. > 30°), or stiff (. ∆. SS. stand-sit. < 10°) spinopelvic mobility contributed to increased error rates. Results. The paired absolute difference between CAS and postoperative imaging measurements was 2.3° (standard deviation (SD) 2.6°) for inclination and 3.1° (SD 4.2°) for anteversion. Using a target zone of 40° (± 10°) (inclination) and 20° (± 10°) (anteversion), postoperative standing radiographs measured 96% of acetabular components within the target zone for both inclination and anteversion. Multiple logistic regression analysis controlling for BMI and sex revealed that hypermobile spinopelvic mobility significantly increased error rates for anteversion (odds ratio (OR) 2.48, p = 0.009) and inclination (OR 2.44, p = 0.016), whereas stiff spinopelvic mobility increased error rates for anteversion (OR 1.97, p = 0.028). There were no dislocations at a minimum three-year follow-up. Conclusion. Despite high reliability in acetabular positioning for inclination in a large patient cohort using an optical CAS system, hypermobile and stiff spinopelvic mobility significantly increased the risk of clinically relevant errors. In patients with abnormal spinopelvic mobility, CAS systems should be adjusted for use to avoid acetabular component misalignment and subsequent risk for long-term dislocation. Cite this article: Bone Jt Open 2022;3(6):475–484


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 9 - 9
2 Jan 2024
Vadalà G Papalia G Russo F Ambrosio L Franco D Brigato P Papalia R Denaro V
Full Access

The use of intraoperative navigation and robotic surgery for minimally invasive lumbar fusion has been increasing over the past decade. The aim of this study is to evaluate postoperative clinical outcomes, intraoperative parameters, and accuracy of pedicle screw insertion guided by intraoperative navigation in patients undergoing lumbar interbody fusion for spondylolisthesis. Patients who underwent posterior lumbar fusion interbody using intraoperative 3D navigation since December 2021 were included. Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey-36 (SF-36) were assessed preoperatively and postoperatively at 1, 3, and 6 months. Screw placement accuracy, measured by Gertzbein and Robbins classification, and facet joint infringement, measured by Yson classification, were assessed by intraoperative Cone Beam CT scans performed at the end of instrumentation. Finally, operation time, intraoperative blood loss, hospital stay, and screw insertion time were evaluated. This study involved 50 patients with a mean age of 63.7 years. VAS decreased from 65.8±23 to 20±22 (p<.01). ODI decreased from 35.4%±15 to 11.8%±14 (p<.01). An increase of SF-36 from 51.5±14 to 76±13 (p<.01) was demonstrated. The accuracy of “perfect” and “clinically acceptable” pedicle screw fixation was 89.5% and 98.4%, respectively. Regarding facet violation, 96.8% of the screws were at grade 0. Finally, the average screw insertion time was 4.3±2 min, hospital stay was 4.2±0.8 days, operation time was 205±53 min, and blood loss was 169±107 ml. Finally, a statistically significant correlation of operation time with hospital stay, blood loss and placement time per screw was found. We demonstrated excellent results for accuracy of pedicle screw fixation and violation of facet joints. VAS, ODI and SF-36 showed statistically significant improvements from the control at one month after surgery. Navigation with intraoperative 3D images represents an effective system to improve operative performance in the surgical treatment of spondylolisthesis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 34 - 34
10 Feb 2023
Farey J Chai Y Xu J Sadeghpour A Marsden-Jones D Baker N Vigdorchik J Walter W
Full Access

Imageless computer navigation systems have the potential to improve acetabular cup position in total hip arthroplasty (THA), thereby reducing the risk of revision surgery. This study aimed to evaluate the accuracy of three alternate registration planes in the supine surgical position generated using imageless navigation for patients undergoing THA via the direct anterior approach (DAA). Fifty-one participants who underwent a primary THA for osteoarthritis were assessed in the supine position using both optical and inertial sensor imageless navigation systems. Three registration planes were recorded: the anterior pelvic plane (APP) method, the anterior superior iliac spines (ASIS) functional method, and the Table Tilt (TT) functional method. Post-operative acetabular cup position was assessed using CT scans and converted to radiographic inclination and anteversion. Two repeated measures analysis of variance (ANOVA) and Bland-Altman plots were used to assess errors and agreement of the final cup position. For inclination, the mean absolute error was lower using the TT functional method (2.4°±1.7°) than the ASIS functional method (2.8°±1.7°, ρ = .17), and the ASIS anatomic method (3.7°±2.1, ρ < .001). For anteversion, the mean absolute error was significantly lower for the TT functional method (2.4°±1.8°) than the ASIS functional method (3.9°±3.2°, ρ = .005), and the ASIS anatomic method (9.1°±6.2°, ρ < .001). All measurements were within ± 10° for the TT method, but not the ASIS functional or APP methods. A functional registration plane is preferable to an anatomic reference plane to measure intra-operative acetabular cup inclination and anteversion accurately. Accuracy may be further improved by registering patient location using their position on the operating table rather than anatomic landmarks, particularly if a tighter target window of ± 5° is desired


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 17 - 17
1 Jun 2021
Lane P Murphy W Harris S Murphy S
Full Access

Problem. Total hip replacement (THA) is among the most common and highest total spend elective operations in the United States. However, up to 7% of patients have 90-day complications after surgery, most frequently joint dislocation that is related to poor acetabular component positioning. These complications lead to patient morbidity and mortality, as well as significant cost to the health system. As such, surgeons and hospitals value navigation technology, but existing solutions including robotics and optical navigation are costly, time-consuming, and complex to learn, resulting in limited uptake globally. Solution. Augmented reality represents a navigation solution that is rapid, accurate, intuitive, easy to learn, and does not require large and costly equipment in the operating room. In addition to providing cutting edge technology to specialty orthopedic centers, augmented reality is a very attractive solution for lower volume and smaller operative settings such as ambulatory surgery centers that cannot justify purchases of large capital equipment navigation systems. Product. HipInsight™ is an augmented reality solution for navigation of the acetabular component in THA. HipInsight is a navigation solution that includes preoperative, cloud based surgical planning based on patient imaging and surgeon preference of implants as well as intraoperative guidance for placement of the acetabular component. Once the patient specific surgical plan is generated on the cloud-based planning system, holograms showing the optimal planned position of the acetabular component are exported in holographic format to a Microsoft HoloLens 2™, which the surgeon wears during placement of the acetabular component in total hip arthroplasty. The pelvis is registered using the HipXpert™ mechanical registration device, which takes 2–3 minutes to dock in the operating room. The surgeon then is able to view the patient's anatomy and optimal placement of the acetabular component under the skin in augmented reality. The surgeon then aligns the real cup impactor with the augmented reality projection of the cup impactor resulting in precise placement of the cup. Timescales. HipInsight was FDA cleared on January 28, 2021 for intraoperative use for placement of the acetabular component in total hip arthroplasty. The first case was performed in February 2021, and the product was launched to a select group of orthopedic surgeons in March 2021. Funding. HipInsight has been self-funded to date, and is beginning to engage in discussions to raise capital for a rapidly scaling commercial launch