header advert
Results 101 - 120 of 4366
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 107 - 107
2 Jan 2024
Park H
Full Access

The rotator cuff tendinopathy is one of the most common shoulder problems leading to full-thickness rotator cuff tendon tear and, eventually, to degenerative arthritis. Recent research on rotator cuff tendon degeneration has focused on its relationship to cell death. The types of cell death known to be associated with rotator cuff tendon degeneration are apoptosis, necrosis, and autophagic cell death. The increased incidence of cell death in degenerative tendon tissue may affect the rates of collagen synthesis and repair, possibly weakening tendon tissue and increasing the risk of tendon rupture. The biomolecular mechanisms of the degenerative changes leading to apoptotic cell death in rotator cuff tenofibroblasts have been identified as oxidative-stress-related cascade mechanisms. Furthermore, apoptosis, necrosis, and autophagic cell death are all known to be mediated by oxidative stress, a condition in which ROS (reactive oxygen species) are overproduced. Lower levels of oxidative stress trigger apoptosis; higher levels mediate necrosis. Although the signaltransduction pathway leading to autophagy has not yet been fully established, ROS are known to be essential to autophagy. A neuronal theory regarding rotator cuff degeneration has been developed from the findings that glutamate, a neural transmitter, is present in increased concentrations in tendon tissues with tendinopathy and that it induces rat supraspinatus tendon cell death. Recent studies have reported that hypoxia involved in rotator cuff tendon degeneration. Because antioxidants are known to scavenge for intracellular ROS, some studies have been conducted to determine whether antioxidants can reduce cell death in rotator cuff tendon-origin fibroblasts. The first study reported that an antioxidant has the ability to reduce apoptosis in oxidative-stressed rotator cuff tenofibroblasts. The second study reported that antioxidants have both antiapoptotic effects and antinecrotic effects on rotator cuff tendon-origin fibroblasts exposed to an oxidative stimulus. The third study reported that an antioxidant has antiautophagic-cell-death effects on rotator cuff tendon-origin fibroblasts exposed to an oxidative stimulus. The fourth study reported that glutamate markedly increases cell death in rotator cuff tendonorigin fibroblasts. The glutamate-induced cytotoxic effects were reduced by an antioxidant, demonstrating its cytoprotective effects against glutamate-induced tenofibroblast cell death. The fifth study reported that hypoxia significantly increases intracellular ROS and apoptosis. The hypoxia-induced cytotoxic effects were markedly attenuated by antioxidants, demonstrating their cytoprotective effects against hypoxia-induced tenofibroblast cell death. In conclusion, antioxidants have cytoprotective effects on tenofibroblasts exposed in vitro to an oxidative stressor, a neurotransmitter, or hypoxia. These cytoprotective effects result from antiapoptotic, antinecrotic, and antiautophagic actions involving the inhibition of ROS formation. These findings suggest that antioxidants may have therapeutic potential for rotator cuff tendinopathy. Further studies must be conducted in order to apply these in vitro findings to clinical situations.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 65 - 65
2 Jan 2024
Maleitzke T
Full Access

Osteoarthritis (OA) is the most common joint disease, affecting approximately 16% of the adult population worldwide. The chronic inflammation in the joint leads to the breakdown of cartilage, which leads to permanent pain and limitations in everyday life at an early stage of the disease. To date, there is no therapy that can interrupt the inflammatory state or reverse cartilage damage. The PROTO consortium (funded by the EU Horizon Europe program, Grant 101095635) aims to prevent the development of OA by correcting a pathological biomechanical pattern by a digital training intervention and to treat early stage OA with an innovative allogeneic cell therapy.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 6 - 6
2 Jan 2024
Liu W Feng M Xu P
Full Access

More and more evidences showed that cartilage harbored local progenitor cells that could differentiate toward osteoblast, chondrocyte, and adipocyte. However, our previous results showed that osteoarthritis derived chondroprogenitor cells (OA-CPC) exhibited strong osteogenic potential even in chondrogenic condition. How to promote their chondrogenic potential is the key for cartilage repair and regeneration in osteoarthritis. Recently, lipid availability was proved to determine skeletal progenitor fate. Therefore, we aim to determine whether lipid inhibition under 3D culture condition could enhance OA-CPC chondrogenesis. Moreover, glucose concentration was also evaluated for chondrogenic capacity. Although there are many researches showed that lower glucose promotes chondrogenesis, in our results, we found that OA-CPC in high concentration of glucose (4.5g/L) with lipid inhibitor (GW1100) showed strongest chondrogenic potential, which could form largest cell pellet with strong proteoglycan staining, COL II expression and no COL I expression. Besides, COL2A1 was increased and COL10A1 was decreased significantly by GW1100 under high glucose condition in 2D culture. Interestingly, although the expression level of MMP13 was not changed by GW1100 at RNA and protein level, less MMP13 protein secreted out of cell nuclear. In summary, we estimated that higher glucose and lower lipid supplies benefit OA-CPC chondrogenesis and cartilage repair.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 58 - 58
11 Apr 2023
Jansen M Salzlechner C Barnes E DiFranco M Custers R Watt F Vincent T Lafeber F Mastbergen S
Full Access

Knee joint distraction (KJD) has been associated with clinical and structural improvement and synovial fluid (SF) marker changes. However, structural changes have not yet been shown satisfactorily in regular care, since radiographic acquisition was not fully standardized. AI-based modules have shown great potential to reduce reading time, increase inter-reader agreement and therefore function as a tool for treatment outcome assessment. The objective was to analyse structural changes after KJD in patients using this AI-based measurement method, and relate these changes to clinical outcome and SF markers.

20 knee OA patients (<65 years old) were included in this study. KJD treatment was performed using an external fixation device, providing 5 mm distraction for 6 weeks. SF was aspirated before, during and immediately after treatment. Weight-bearing antero-posterior knee radiographs and WOMAC questionnaires were collected before and ~one year after treatment. Radiographs were analysed with the Knee Osteoarthritis Labelling Assistant (KOALA, IB Lab GmbH, Vienna, Austria), and 10 pre-defined biomarker levels in SF were measured by immunoassay. Radiographic one-year changes were analysed and linear regression was used to calculate associations between changes in standardized joint space width (JSW) and WOMAC, and changes in JSW and SF markers.

After treatment, radiographs showed an improvement in Kellgren-Lawrence grade in 7 of 16 patients that could be evaluated; 3 showed a worsening. Joint space narrowing scores and continuous JSW measures improved especially medially. A greater improvement in JSW was significantly associated with a greater improvement in WOMAC pain (β=0.64;p=0.020). A greater increase in MCP1 (β=0.67;p=0.033) and lower increase in TGFβ1 (β=-0.787;p=0.007) were associated with JSW improvement.

Despite the small number of patients, also in regular care KJD treatment shows joint repair as measured automatically on radiographs, significantly associated with certain SF marker change and even with clinical outcome.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 67 - 67
2 Jan 2024
Belvedere C
Full Access

3D accurate measurements of the skeletal structures of the foot, in physiological and impaired subjects, are now possible using Cone-Beam CT (CBCT) under real-world loading conditions. In detail, this feature allows a more realistic representation of the relative bone-bone interactions of the foot as they occur under patient-specific body weight conditions. In this context, varus/valgus of the hindfoot under altered conditions or the thinning of plantar tissues that occurs with advancing age are among the most complex and interesting to represent, and numerous measurement proposals have been proposed. This study aims to analyze and compare these measurements from CBCT in weight-bearing scans in a clinical population. Sixteen feet of diabetic patients and ten feet with severe adult flatfoot acquired before/after corrective surgery underwent CBCT scans (Carestream, USA) while standing on the leg of interest. Corresponding 3D shapes of each bone of the shank and hindfoot were reconstructed (Materialise, Belgium). Six different techniques found in the literature were used to calculate the varus/valgus deformity, i.e., the inclination of the hindfoot in the frontal plane of the shank, and the distance between the ground and the metatarsal heads was calculated along with different solutions for the identification of possible calcifications. Starting with an accurate 3D reconstruction of the skeletal structures of the foot, a wide range of measurements representing the same angle of hindfoot alignment were found, some of them very different from each other. Interesting correlations were found between metatarsal height and subject age, significant in diabetic feet for the fourth and fifth metatarsal bones. Finally, CBCT allows 3D assessment of foot deformities under loaded conditions. The observed traditional measurement differences and new measurement solutions suggest that clinicians should consider carefully the anatomical and functional concepts underlying measurement techniques when drawing clinical and surgical conclusions.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 7 - 7
2 Jan 2024
Macmillan A Muhammad H Hosni RA Alkhayref M Hotchen A Robertson-Waters E Strangmark E Gompels B Wang J McDonnell S Khan W Clatworthy M Birch M McCaskie A
Full Access

In relation to regenerative therapies in osteoarthritis and cartilage repair, mesenchymal stromal cells (MSCs) have immunomodulatory functions and influence macrophage behaviour. Macrophages exist as a spectrum of pro-(M1) and anti-(M2) inflammatory phenotypic subsets. In the context of cartilage repair, we investigated MSC-macrophage crosstalk, including specifically the priming of cartilage cells by macrophages to achieve a regenerative rather than fibrotic outcome. Human monocytes were isolated from blood cones and differentiated towards M1 and M2 macrophages. Monocytes (Mo), M1 and M2 macrophages were cultured directly and indirectly (trans-well system) with human bone marrow derived MSCs. MSCs were added during M1 polarisation and separately to already induced M1 cells. Outcomes (M1/M2 markers and ligands/receptors) were evaluated using RT-qPCR and flow cytometry. Influence on chondrogenesis was assessed by applying M1 and M2 macrophage conditioned media (CM) sequentially to cartilage derived cells (recapitulating an acute injury environment). RT-qPCR was used to evaluate chondrogenic/fibrogenic gene transcription. The ratio of M2 markers (CD206 or CD163) to M1 markers (CD38) increased when MSCs were added to Mo/M1 macrophages, regardless of culture system used (direct or indirect). Pro-inflammatory markers (including TNFβ) decreased. CXCR2 expression by both M1 macrophages and MSCs decreased when MSCs were added to differentiated M1 macrophages in transwell. When adding initially M1 CM (for 12 hours) followed by M2 CM (for 12 hours) sequentially to chondrocytes, there was a significant increase of Aggrecan and Collagen type 2 gene expression and decrease in fibroblastic cell surface markers (PDPN/CD90). Mo/M1 macrophages cultured with MSCs, directly or indirectly, are shifted towards a more M2 phenotype. Indirect culture suggests this effect can occur via soluble signaling mediators. Sequential exposure of M1CM followed by M2CM to chondrocytes resulted in increased chondrogenic and reduced fibrotic gene expression, suggesting that an acute pro-inflammatory stimulus may prime chondrocytes before repair.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 50 - 50
4 Apr 2023
Wang Z van den Beucken J van den Geest I Leeuwenburgh S
Full Access

Residual tumor cells left in the bone defect after malignant bone tumor resection can result in local tumor recurrence and high mortality. Therefore, ideal bone filling materials should not only aid bone reconstruction or regeneration, but also exert local chemotherapeutic efficacy. However, common bone substitutes used in clinics are barely studied in research for local delivery of chemotherapeutic drugs. Here, we aimed to use facile manufacturing methods to render polymethylmethacrylate (PMMA) cement and ceramic granules suitable for local delivery of cisplatin to limit bone tumor recurrence.

Porosity was introduced into PMMA cement by adding 1-4% carboxymethylcellulose (CMC) containing cisplatin, and chemotherapeutic activity was rendered to two types of granules via adsorption. Then, mechanical properties, porosity, morphology, drug release kinetics, ex vivo reconstructive properties of porous PMMA and in vitro anti-cancer efficacy against osteosarcoma cells were assessed. Morphologies, molecular structures, drug release profiles and in vitro cytostatic effects of two different drug-loaded granules on the proliferation of metastatic bone tumor cells were investigated.

The mechanical strengths of PMMA-based cements were sufficient for tibia reconstruction at CMC contents lower than 4% (≤3%). The concentrations of released cisplatin (12.1% and 16.6% from PMMA with 3% and 4% CMC, respectively) were sufficient for killing of osteosarcoma cells, and the fraction of dead cells increased to 91.3% within 7 days. Functionalized xenogeneic granules released 29.5% of cisplatin, but synthetic CaP granules only released 1.4% of cisplatin over 28 days. The immobilized and released cisplatin retained its anti-cancer efficacy and showed dose-dependent cytostatic effects on the viability of metastatic bone tumor cells.

Bone substitutes can be rendered therapeutically active for anticancer efficacy by functionalization with cisplatin. As such, our data suggest that multi-functional PMMA-based cements and cisplatin-loaded granules represent viable treatment options for filling bone defects after bone tumor resection.


Results in patients undergoing total hip arthroplasty (THA) for femoral head osteonecrosis (ON) when compared with primary osteoarthritis (OA) are controversial. Different factors like age, THA type or surgical technique may affect outcome. We hypothesized that patients with ON had an increased revision rate compared with OA. We analysed clinical outcome, estimated the survival rate for revision surgery, and their possible risk factors, in two groups of patients.

In this retrospective cohort analysis of our prospective database, we assessed 2464 primary THAs implanted between 1989 and 2017. Patients with OA were included in group 1, 2090 hips; and patients with ON in group 2, 374 hips. In group 2 there were more men (p<0.001), patients younger than 60 years old (p<0.001) and with greater physical activity (p<0.001). Patients with lumbar OA (p<0.001) and a radiological acetabular shape type B according to Dorr (p<0.001) were more frequent in group 1. Clinical outcome was assessed according to the Harris Hip Score and radiological analysis included postoperative acetabular and femoral component position and hip reconstruction. Kaplan-Meier survivorship analysis was used to estimate the cumulative probability of not having revision surgery for different reasons. Univariate and multivariate Cox regression models were used to assess risk factors for revision surgery.

Clinical improvement was better in the ON at all intervals. There were 90 hips revised, 68 due to loosening or wear, 52 (2.5%) in group 1, and 16 (4.3%) in group 2. Overall, the survival rate for revision surgery for any cause at 22 years was 88.0 % (95% CI, 82-94) in group 1 and 84.1% (95% CI, 69 – 99) in group 2 (p=0.019). Multivariate regression analysis showed that hips with conventional polyethylene (PE), compared with highly-cross linked PEs or ceramic-on-ceramic bearings, (p=0.01, Hazard Ratio (HR): 2.12, 95% CI 1.15-3.92), and cups outside the Lewinnek´s safe zone had a higher risk for revision surgery (p<0.001, HR: 2.57, 95% CI 1.69-3.91).

Modern highly-cross linked PEs and ceramic-on-ceramic bearings use, and a proper surgical technique improved revision rate in patients undergoing THA due to ON compared with OA.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 111 - 111
2 Jan 2024
Barbosa F Garrudo FFF Alberte P Carvalho M Ferreira FC Silva JC
Full Access

The current procedures being applied in the clinical setting to address osteoporosis-related delayed union and nonunion bone fractures have been found to present mostly suboptimal outcomes. As a result, bone tissue engineering (BTE) solutions involving the development of implantable biomimetic scaffolds to replace damaged bone and support its regeneration are gaining interest. The piezoelectric properties of the bone tissue, which stem primarily from the significant presence of piezoelectric type I collagen fibrils in the tissue's extracellular matrix (ECM), play a key role in preserving the bone's homeostasis and provide integral assistance to the regeneration process. However, despite their significant potential, these properties of bone tend to be overlooked in most BTE-related studies. In order to bridge this gap in the literature, novel hydroxyapatite (HAp)-filled osteoinductive and piezoelectric poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TrFE) electrospun nanofibers were developed to replicate the bone's fibrous ECM composition and electrical features. Different HAp nanoparticle concentrations (1–10%, wt%) were tested to assess their effect on the physicochemical and biological properties of the resulting fibers. The fabricated scaffolds displayed biomimetic collagen fibril-like diameters, while also presenting mechanical features akin to type I collagen. The increase in HAp presence was found to enhance both surface and piezoelectric properties of the fibers, with an improvement in scaffold wettability and increase in β-phase nucleation (translating to increased piezoelectricity) being observed. The HAp-containing scaffolds also exhibited an augmented bioactivity, with a more comprehensive surface mineralization of the fibers being obtained for the scaffolds with the highest HAp concentrations. Improved osteogenic differentiation of seeded human mesenchymal stem/stromal cells was achieved with the addition of HAp, as confirmed by an increased ALP activity, calcium deposition and upregulated expression of key osteogenic markers. Overall, our findings highlight, for the first time, the potential of combining PVDF-TrFE and HAp to develop electroactive and osteoinductive nanofibers for BTE.

Acknowledgements: The authors thank FCT for funding through the projects InSilico4OCReg (PTDC/EME-SIS/0838/2021), OptiBioScaffold (PTDC/EME-SIS/4446/2020) and BioMaterARISES (EXPL/CTM-CTM/0995/2021), the PhD scholarship (2022.10572.BD) and to the research institutions iBB (UIDB/04565/2020 and UIDP/04565/2020) and Associate Laboratory i4HB (LA/P/0140/2020).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 113 - 113
2 Jan 2024
Ghaffari A Rasmussen J Kold S Rahbek O
Full Access

Gait measurements can vary due to various intrinsic and extrinsic factors, and this variability becomes more pronounced using inertial sensors in a free-living environment. Therefore, identifying and quantifying the sources of variability is essential to ensure measurement reliability and maintain data quality.

This study aimed to determine the variability of daily accelerations recorded by an inertial sensor in a group of healthy individuals. Ten participants, four males and six females, with a mean age of 50 years (range: 29–61) and BMI of 26.9 kg/m2 (range: 21.4–36.8), were included. A single accelerometer continuously recorded lower limb accelerations over two weeks. We extracted and analyzed the accelerations of three consecutive strides within walking bouts if the time difference between the bouts was more than two hours. Multivariate mixed-effects modeling was performed on both the discretized acceleration waveforms at 101 points (0–100) and the harmonics of the signals in the frequency domain to determine the variance components for different subjects, days, bouts, and steps as the random effect variables. Intraclass correlation coefficients (ICCs) were calculated for between-day, between-bout, and between-step comparisons.

The results showed that the ICCs for the between-day, between-bout, and between-step comparisons were 0.73, 0.82, 0.99 for the vertical axis; 0.64, 0.75, 0.99 for the anteroposterior axis; and 0.55, 0.96, 0.97 for the mediolateral axis. For the signal harmonics, the respective ICCs were 0.98, 0.98, 0.99 for the vertical axis; 0.54, 0.93, 0.98 for the anteroposterior axis; and 0.69, 0.78, 0.95 for the mediolateral axis.

Overall, this study demonstrated that accelerations recorded continuously for multiple days in a free-living environment exhibit high variability, mainly between days, and some variability arising from differences between walking bouts during different times within days. However, reliable and repeatable gait measurements can be obtained by identifying and quantifying the sources of variability.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 114 - 114
2 Jan 2024
Maglio M Tschon M Sartori M Martini L Rocchi M Dallari D Giavaresi G Fini M
Full Access

The use of implant biomaterials for prosthetic reconstructive surgery and osteosynthesis is consolidated in the orthopaedic field, improving the quality of life of patients and allowing for healthy and better ageing. However, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials, particularly for the study of local effects of implant and osteointegration. Despite the complex process of osseointegration is difficult to recreate in vitro, the growing challenges in developing alternative models require to set-up and validate new approaches. Aim of the present study is to evaluate an advanced in vitro tissue culture model of osteointegration of titanium implants in human trabecular bone. Cubic samples (1.5×1.5 cm) of trabecular bone were harvested as waste material from hip arthroplasty surgery (CE AVEC 829/2019/Sper/IOR); cylindrical defects (2 mm Ø, 6 mm length) were created, and tissue specimens assigned to the following groups: 1) empty defects- CTR-; 2) defects implanted with a cytotoxic copper pin (Merck cod. 326429)- CTR+; 3) defects implanted with standard titanium pins of 6 µm-rough (ZARE S.r.l) -Ti6. Tissue specimens were cultured in mini rotating bioreactors in standard conditions, weekly assessing viability. At the 8-week-timepoint, immunoenzymatic, microtomographic, histological and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, differently from Ti6 which appears to have a trophic effect on the bone. MicroCT and histological analysis supported the results, with lower BV/TV and Tb.Th values observed in CTR- compared to CTR+ and Ti6 and signs of matrix and bone deposition at the implant site. The collected data suggest the reliability of the tested model which can recreate the osseointegration process in vitro and can therefore be used for preliminary evaluations to reduce and refine in vivo preclinical models.

Acknowledgment: This work was supported by Emilia-Romagna Region for the project “Sviluppo di modelli biologici in vitro ed in silico per la valutazione e predizione dell'osteointegrazione di dispositivi medici da impianto nel tessuto osseo”


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 11 - 11
2 Jan 2024
Petrucci G Papalia GF Russo F Ambrosio L Papalia R Vadalà G Denaro V
Full Access

Chronic low back pain (CLBP) is the most common cause of disability worldwide, and lumbar spine fusion (LSF) is often chosen to treat pain caused by advanced degenerative disease when clinical treatment failed certain cases, the post-surgical outcomes are not what was expected. Several studies highlight how important are. In psychological variables during the postoperative spine surgery period. The aim of this study is to assess the role of preoperative depression on postoperative clinical outcomes. We included patients who underwent LSF since December 2021. Preoperative depression was assessed administering Beck Depression Inventory questionnaire (BDI). And pain and disability were evaluated at 1, 3, and 6 months, administering respectively Visual Analogic Scale (VAS) and Oswestry Disability Index (ODI). As statistical analysis Mann-Whitney test was performed. We included 46 patients, 20 female (43,5%) and 26 male (56,5%) with an average age of 64,2. The population was divided in two groups, fixing the BDI cut-off point at 10. Patients with BDI < 10 points (N=28) had normal mental health status, instead patients with BDI > 10 points (N=16) had depressive disorders. At 3 months patients with healthy mental status reported statistically significant reduction of pain (U = 372,5, p = .006) and improvement of disability but without statistical significancy (U = 318, p = 0,137). At 6 months patients without psychological disease reported statistically significant reduction of pain (U = 342, p = 0,039) and disability (U = 372,5, p = 0,006).

This study demonstrates the correlation between pre-existing depressive state and poorer clinical outcomes after spine surgery. These results are consistent with the literature. Therefore, during the surgical decision making it is crucial to take psychological variables into account in order to predict the results after surgery and inform patients on the potential influence of mental status.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 65 - 65
4 Apr 2023
Mazetyte-Godiene A Vailionyte A Valiokas R Usas A
Full Access

Herein we address, hyaline cartilage regeneration issue by engineering a synthetic biocompatible hydrogel scaffold capable to promote chondrogenic differentiation. In this study, the chemically crosslinked hydrogels consisting of synthetic peptides that have the collagen-like sequence Cys-Gly-(Pro-Lys-Gly)4 (Pro-Hyp-Gly)4 (Asp-Hyp-Gly)4- conjugated with RGD sequence (CLP-RGD) and crosslinked hydrogels of type I collagen (CA) were used. For cartilage formation, we used human skeletal muscle-derived stem/progenitor cells (hMDSPCs) set for differentiation towards a chondrogenic lineage by BMP-7 and TGF-ß3 growth factors.

Initially 150, 100 and 75 ng of BMP-7and TGF-ß3 growth factors were inserted in each scaffold and amount of growth factors diffusing out of the scaffolds was observed by ELISA assays. In vitro experiments were performed by seeding hMDSPCs onto hydrogels loaded with growth factors (75ng/scaffold) and cultured for 28 days. Cartilage formation was monitored by ELISA and RT-PCR assays. All experiments were performed in triplicates or quadruplicates.

Growth factors incorporation strategy allowed a sustained release of TGF-ß3 growth factor, 6.00.3% of the initially loaded amount diffused out after 4 h and 2.70.5% already at the second time point (24h) from CA and CLP-RGD substrates. For the BMP-7 growth factor, 13.12.3% and 15.751.6% of the initially loaded amount diffused out after 4 h, 1.70.2% and 2.450.3% at the second time point (24 h) from CA and CLP-RGD respectively. In vitro experiments shown that scaffolds with immobilized growth factors resulted in higher collagen type II accumulation when compared to the scaffolds alone. The gene expression on CLP-RGD hydrogels with growth factors has shown lower collagen type I expression and higher aggrecan expression compared to day 0. However, we also report increased collagen X gene expression on CA hydrogels (with growth factors).

Our results support the potential of the strategy of combining hydrogels functionalized with differentiation factors toward improving cartilage repair.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 125 - 125
2 Jan 2024
Scala P Giudice V Selleri C Maffulli N Rehak L Porta G
Full Access

Spontaneous muscle regenerative potential is limited, as severe injuries incompletely recover and result in chronic inflammation. Current therapies are restricted to conservative management, not providing a complete restitutio ad integrum; therefore, alternative therapeutic strategies are welcome, such as cell-based therapies with stem cells or Peripheral Blood Mononuclear Cells (PBMCs). Here, we described two different in vitro myogenic models: a 2D perfused system and a 3D bioengineered scaffold within a perfusion bioreactor. Both models were assembled with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and human primary skeletal myoblasts (hSkMs) to study induction and maintenance of myogenic phenotype in presence of PBMCs. When hBM-MSCs were cultured with human primary skeletal myoblasts (hSkMs) in medium supplemented with 10 ng/mL of bFGF; cells showed increased expression of myogenic-related gene, such as Desmin and Myosin Heavy Chain II (MYH2) after 21 days, and a prevalent expression of anti-inflammatory cytokines (IL10, 15-fold). Next, PBMCs were added in an upper transwell chamber and hBM-MSCs significantly upregulated myogenic genes throughout the culture period, while pro-inflammatory cytokines (e.g., IL12A) were downregulated. In 3D, hBM-MSCs plus hSkMs embedded in fibrin-based scaffolds, cultured in dynamic conditions, showed that all myogenic-related genes tended to be upregulated in the presence of PBMCs, and Desmin and MYH2 were also detected at protein level, while pro-inflammatory cytokine genes were significantly downregulated in the presence of PBMCs. In conclusion, our works suggest that hBM-MSCs have a versatile myogenic potential, enhanced and modulated by PMBCs. Moreover, our 3D biomimetic approach seemed to better resemble the tissue architecture allowing an efficient in vitro cellular cross-talk.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 83 - 83
2 Jan 2024
Halloum A Kold S Rölfing J Abood A Rahbek O
Full Access

The aim of this scoping review is to understand the extent and type of evidence in relation to the use of guided growth for correcting rotational deformities of long bones. Guided growth is routinely used to correct angular deformities in long bones in children. It has also been proven to be a viable method to correct rotational deformities, but the concept is not yet fully examined. Databases searched include Medline, Embase, Cochrane Library, Web of Science and Google Scholar.

All identified citations were uploaded into Rayyan.ai and screened by at least two reviewers. The search resulted in 3569 hits. 14 studies were included: 1 review, 3 clinical trials and 10 pre-clinical trials. Clinical trials: a total of 21 children (32 femurs and 5 tibiae) were included. Surgical methods were 2 canulated screws connected by cable, PediPlates obliquely oriented, and separated Hinge Plates connected by FiberTape. Rotation was achieved in all but 1 child. Adverse effects reported include limb length discrepancy (LLD), knee stiffness and rebound of rotation after removal of tethers. 2 pre-clinical studies were ex-vivo studies, 1 using 8-plates on Sawbones and 1 using a novel z-shaped plates on human cadaver femurs. There were 5 lapine studies (2 using femoral plates, 2 using tibial plates and 1 using an external device on tibia), 1 ovine (external device on tibia), 1 bovine (screws and cable on metacarp) and a case-report on a dog that had an external device spanning from femur to tibia. Rotation was achieved in all studies. Adverse effects reported include implant extrusions, LLD, articular deformities, joint stiffness and rebound. All included studies conclude that guided growth is a viable treatment for rotational deformities of long bones, but there is great variation in models and surgical methods used, and in reported adverse effects.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 13 - 13
11 Apr 2023
Edwards T Gupta S Soussi D Patel A Khan S Liddle A Cobb J Logishetty K
Full Access

Current evidence suggests that superior surgical team performance is linked to fewer intra-operative errors, reductions in mortality and even improved patient outcomes. Virtual reality has demonstrated excellent efficacy in training surgeons and scrub nurses individually, however its impact on training teams is currently unknown. This study aimed to assess if training together (scrub nurse and surgeon) in an innovative multiplayer virtual reality program was superior to single player training for novices learning anterior approach total hip arthroplasty (AA-THA).

40 participants (20 novice surgeons (CT1-ST3 level) and 20 novice scrub nurses) were enrolled in this study and randomised to individual or team virtual reality training. Individually-trained participants played with virtual avatar counterparts, whilst teams trained live in pairs (surgeon and scrub nurse). Both groups underwent 5 VR training sessions over 6 weeks. Subsequently, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated operating theatre. Teams performed together and individually-trained participants were randomly paired up with a solo player of the opposite role. Videos of the assessment were marked by two blinded expert assessors. The primary outcome was team performance as graded by the validated NOTECHs II score. Secondary outcomes were procedure time and number of technical errors from an expert pre-defined protocol.

Teams outperformed individually-trained participants for non-technical skills in the real-world assessment (NOTECHS-II score 50.3 ± 6.04 vs 43.90 ± 5.90, p=0.0275). They completed the assessment 28.1% faster (31.22 minutes ±2.02 vs 43.43 ±2.71, p=0.01), and made close to half the number of technical errors when compared to the individual group (12.9 ± 8.3 vs 25.6 ± 6.1, p=0.001).

Multiplayer, team training appears to lead to faster surgery with fewer technical errors and the development of superior non-technical skills.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 127 - 127
2 Jan 2024
Strangmark E Wang J Hosni RA Muhammad H Alkhrayef M Robertson-Waters E MacMillan A Gompels B Vogt A Khan W Birch M McCaskie A
Full Access

Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo environment of a targeted biological system. However, growing evidence indicates that the characteristics of cells investigated in this way differ substantially from their characteristics in the human body. The limitations of TCP monolayer cell cultures are especially relevant for chondrocytes, the cell population responsible for producing cartilage matrix, because their zonal organization in hyaline cartilage is not preserved in a flattened monolayer assay. Here, we contrast the response of primary human chondrocytes to inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma, via transcriptional, translational, and histological profiling, when grown either on TCP or within a 3D cell pellet (scaffold-less). We focus on anti-apoptotic (Bcl2), pro-apoptotic (Bax, Mff, Fis1), and senescent (MMP13, MMP1, PCNA, p16, p21) markers. We find that the 3D environment of the chondrocyte has a profound effect on the behavior and fate of the cell; in TCP monolayer cultures, chondrocytes become anti-apoptotic and undergo senescence in response to inflammatory cytokines, whereas in 3D cell pellet cultures, they exhibit a pro-apoptotic response. Our findings demonstrate that chondrocyte culture environment plays a pivotal role in cell behavior, which has important implications for the clinical applicability of in vitro research of cartilage repair. Although there are practical advantages to 2D cell cultures, our data suggest researchers should be cautious when drawing conclusions if they intend to extrapolate findings to in vivo phenomena. Our data demonstrates opposing chondrocyte responses in relation to apoptosis and senescence, which appear to be solely reliant on the environment of the culture system. This biological observation highlights that proper experimental design is crucial to increase the clinical utility of cartilage repair experiments and streamline their translation to therapy development.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 74 - 74
11 Apr 2023
Gilbert S Jones R White P Mason D
Full Access

Stimulation of the mechanosensitive ion channel, Piezo1 promotes bone anabolism and SNPs in the Piezo1 locus are associated with changes in fracture risk. Osteocytes function as critical regulators of bone homeostasis by sensing mechanical signals. The current study used a human, cell-based physiological, 3D in vitro model of bone to determine whether loading of osteocytes in vitro results in upregulation of the Piezo1 pathway.

Human Y201 MSCs, embedded in type I collagen gels and differentiated to osteocytes for 7-days, were subjected to pathophysiological load (5000 µstrain, 10Hz, 5 mins; n=6) with unloaded cells as controls (n=4). RNA was extracted 1-hr post load and assessed by RNAseq analysis. To mimic mechanical load and activate Piezo1, cells were differentiated to osteocytes for 13 days and treated ± Yoda1 (5µM, 2- and 24-hs, n=4); vehicle treated cells served as controls (n=4). RNA was subjected to RT-qPCR and data normalised to the housekeeping gene, YWHAZ. Media was analysed for IL6 release by ELISA.

Mechanical load upregulated Piezo1 gene expression (16.5-fold, p<0.001) and expression of the transcription factor NFATc1, and matricellular protein CYR61, known regulators of Piezo1 mechanotransduction (3-fold; p= 5.0E-5 and 6.8-fold; p= 6.0E-5, respectively). After 2-hrs, Yoda1 increased the expression of the early mechanical response gene, cFOS (11-fold; p=0.021), mean Piezo1 expression (2.3-fold) and IL-6 expression (103-fold, p<0.001). Yoda1 increased the release of IL6 protein after 24 hours (7.5-fold, p=0.001).

This study confirms Piezo1 as an important mechanosensor in osteocytes. Piezo1 activation mediated an increase in IL6, a cytokine that drives inflammation and bone resorption providing a direct link between mechanical activation of Piezo1, bone remodeling and inflammation, which may contribute to mechanically induced joint degeneration in diseases such as osteoarthritis. Mechanistically, we hypothesize this may occur through promoting Ca2+ influx and activation of the NFATc1 signaling pathway.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 22 - 22
17 Apr 2023
Murugesu K Decruz J Jayakumar R
Full Access

Standard fixation for intra-articular distal humerus fracture is open reduction and internal fixation (ORIF). However, high energy fractures of the distal humerus are often accompanied with soft tissue injuries and or vascular injuries which limits the use of internal fixation. In our report, we describe a highly complex distal humerus fracture that showed promising healing via a ring external fixator.

A 26-year-old man sustained a Gustillo Anderson Grade IIIB intra-articular distal humerus fracture of the non-dominant limb with bone loss at the lateral column. The injury was managed with aggressive wound debridement and cross elbow stabilization via a hinged ring external fixator. Post operative wound managed with foam dressing. Post-operatively, early controlled mobilization of elbow commenced. Fracture union achieved by 9 weeks and frame removed once fracture united. No surgical site infection or non-union observed throughout follow up. At 2 years follow up, flexion - extension of elbow is 20°- 100°, forearm supination 65°, forearm pronation 60° with no significant valgus or varus deformity.

The extent of normal anatomic restoration in elbow fracture fixation determines the quality of elbow function with most common complication being elbow stiffness. Ring fixator is a non-invasive external device which provides firm stabilization of fracture while allowing for adequate soft tissue management. It provides continuous axial micro-movements in the frame which promotes callus formation while avoiding translation or angulation between the fragments. In appropriate frame design, they allow for early rehabilitation of joint where normal range of motion can be allowed in controlled manner immediately post-fixation.

Functional outcome of elbow fracture from ring external fixation is comparable to ORIF due to better rehabilitation and lower complications. Ring external fixator in our patient achieved acceptable functional outcome and fracture alignment meanwhile the fracture was not complicated with common complications seen in ORIF.

In conclusion, ring external fixator is as effective as ORIF in treating complex distal humeral fractures and should be considered for definitive fixation in such fractures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 75 - 75
11 Apr 2023
Hofmann J Bewersdorf T Schmidmaier G Grossner T
Full Access

The novel, highly-sensitive and non-destructive method for the quantification of the osteogenic potential of bone marrow mesenchymal stem cells (BM-MSCs), by the evaluation of its hydroxyapatite (HA), in vitro is 99mTc-HDP-Labelling. 99mTc-HDP (tracer) binds rapidly to HA and this uptake can be visualized and quantified. This study was performed to evaluate if this method is suitable to perform a real-time assessment during an ongoing cell culture and if the radioactive tracer may influence the cells and their ability to differentiate.

BM-MSCs (n=3) were cultivated in 35mm-dishes. Groups 1 and 3 received DMEM-LG based osteogenic media while Groups 2 und 4 were non-osteogenic controls.

Groups 1 and 2 (multi-labelling) were incubated with 5 MBq 99mTc-HDP for 30min on day 7 (d7) and the bound activity was measured using an activimeter. Subsequently the cell-culture was continued and again labelled with 99mTc-HDP on day 14 and 21 (d14, d21).

Groups 3 and 4 (single labelling), cultivation of the respective triplicates, ended on day 7, 14 and 21 (d7, d14, d21) followed by 99mTc-HDP-Labelling.

Statistical analysis using one-factor ANOVA (p<0.05).

Absolute tracer uptake increased steadily in both osteogenic groups: 1 (d7: 0.315; d14: 1.093; d21: 3.283 MBq) and 3 (d7: 0.208; d14: 0.822; d: 212.437 MBq) and was significantly higher than in the corresponding non-osteogenic control-group (Group 2 and 4) at all timepoints. (p<0.001).

No significant negative effect of the radioactive tracer could be revealed in group 1 (multi radioactive labelling on d7, d14, d21) compared to Group 3 (singe labelling).

The 99mTc-Uptake of groups 2 and 4 was not significantly different at any time.

Our data show that the repeated exposition to 99mTc-HDP has no negative influence on the osteogenic differentiation potential of BM-MSCs. Therefore, the method is capable of determining the amount of HA during an ongoing cell culture.