Advertisement for orthosearch.org.uk
Results 1 - 20 of 54
Results per page:
Bone & Joint Open
Vol. 5, Issue 9 | Pages 785 - 792
19 Sep 2024
Clement RGE Wong SJ Hall A Howie SEM Simpson AHRW

Aims

The aims of this study were to: 1) report on a cohort of skeletally mature patients with native hip and knee septic arthritis over a 14-year period; 2) to determine the rate of joint failure in patients who had experienced an episode of hip or knee septic arthritis; and 3) to assess the outcome following septic arthritis relative to the infecting organism, whether those patients infected by Staphylococcus aureus would be more likely to have adverse outcomes than those infected by other organisms.

Methods

All microbiological samples from joint aspirations between March 2000 and December 2014 at our institution were reviewed in order to identify cases of culture-proven septic arthritis. Cases in children (aged < 16 years) and prosthetic joints were excluded. Data were abstracted on age at diagnosis, sex, joint affected (hip or knee), type of organisms isolated, cause of septic arthritis, comorbidities within the Charlson Comorbidity Index (CCI), details of treatment, and outcome.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 362 - 371
17 Jul 2024
Chang H Liu L Zhang Q Xu G Wang J Chen P Li C Guo X Yang Z Zhang F

Aims

The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA.

Methods

Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.


Aims

To systematically review the efficacy of split tendon transfer surgery on gait-related outcomes for children and adolescents with cerebral palsy (CP) and spastic equinovarus foot deformity.

Methods

Five databases (CENTRAL, CINAHL, PubMed, Embase, Web of Science) were systematically screened for studies investigating split tibialis anterior or split tibialis posterior tendon transfer for spastic equinovarus foot deformity, with gait-related outcomes (published pre-September 2022). Study quality and evidence were assessed using the Methodological Index for Non-Randomized Studies, the Risk of Bias In Non-Randomized Studies of Interventions, and the Grading of Recommendations Assessment, Development and Evaluation.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 131 - 131
4 Apr 2023
Korcari A Nichols A Loiselle A
Full Access

Depletion of Scleraxis-lineage (ScxLin) cells in adult tendon recapitulates age-related decrements in cell density, ECM organization and composition. However, depletion of ScxLin cells improves tendon healing, relative to age-matched wildtype mice, while aging impairs healing. Therefore, we examined whether ScxLin depletion and aging result in comparable shifts in the tendon cell environment and defined the intrinsic programmatic shifts that occur with natural aging, to define the key regulators of age-related healing deficits. ScxLin cells were depleted in 3M-old Scx-Cre+; Rosa-DTRF/+ mice via diphtheria toxin injections into the hindpaw. Rosa-DTRF/+ mice were used as wildtype (WT) controls. Tendons were harvested from 6M-old ScxLin depleted and WT mice, and 21-month-old (21M) C57Bl/6 mice (aged). FDL tendons (n=6) were harvested for single-cell RNAseq, pooled, collagenase digested, and sorted for single cell capture. Data was processed using Cell Ranger and then aligned to the annotated mouse genome (mm10). Filtering, unsupervised cell clustering, and differential gene expression (DEG) analysis were performed using Seurat. Following integration and sub-clustering of the tenocyte populations, five distinct subpopulations were observed. In both ScxLin depletion and aging, ‘ECM synthesizers’ and ‘ECM organizers’ populations were lost, consistent with disruptions in tissue homeostasis and altered ECM composition. However, in ScxLin depleted mice retention of a ‘specialized ECM remodeler’ population was observed, while aging tendon cells demonstrated inflammatory skewing with retention of a ‘pro-inflammatory tenocyte population’. In addition, enrichment of genes associated with protein misfolding clearance were observed in aged tenocytes. Finally, a similar inflammatory skewing was observed in aged tendon-resident macrophages, with this skewing not observed in ScxLin depleted tendons. These data suggest that loss of ‘ECM synthesizer’ populations underpins disruptions in tendon homeostasis. However, retention of ‘specialized remodelers’ promotes enhanced healing (ScxLin depletion), while inflammatory skewing may drive the impaired healing response in aged tendons


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 455 - 464
15 Mar 2023
de Joode SGCJ Meijer R Samijo S Heymans MJLF Chen N van Rhijn LW Schotanus MGM

Aims

Multiple secondary surgical procedures of the shoulder, such as soft-tissue releases, tendon transfers, and osteotomies, are described in brachial plexus birth palsy (BPBP) patients. The long-term functional outcomes of these procedures described in the literature are inconclusive. We aimed to analyze the literature looking for a consensus on treatment options.

Methods

A systematic literature search in healthcare databases (PubMed, Embase, the Cochrane library, CINAHL, and Web of Science) was performed from January 2000 to July 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The quality of the included studies was assessed with the Cochrane ROBINS-I risk of bias tool. Relevant trials studying BPBP with at least five years of follow-up and describing functional outcome were included.


Bone & Joint Research
Vol. 11, Issue 9 | Pages 669 - 678
1 Sep 2022
Clement RGE Hall AC Wong SJ Howie SEM Simpson AHRW

Aims. Staphylococcus aureus is a major cause of septic arthritis, and in vitro studies suggest α haemolysin (Hla) is responsible for chondrocyte death. We used an in vivo murine joint model to compare inoculation with wild type S. aureus 8325-4 with a Hla-deficient strain DU1090 on chondrocyte viability, tissue histology, and joint biomechanics. The aim was to compare the actions of S. aureus Hla alone with those of the animal’s immune response to infection. Methods. Adult male C57Bl/6 mice (n = 75) were randomized into three groups to receive 1.0 to 1.4 × 10. 7. colony-forming units (CFUs)/ml of 8325-4, DU1090, or saline into the right stifle joint. Chondrocyte death was assessed by confocal microscopy. Histological changes to inoculated joints were graded for inflammatory responses along with gait, weight changes, and limb swelling. Results. Chondrocyte death was greater with 8325-4 (96.2% (SD 5.5%); p < 0.001) than DU1090 (28.9% (SD 16.0%); p = 0.009) and both were higher than controls (3.8% (SD 1.2%)). Histology revealed cartilage/bone damage with 8325-4 or DU1090 compared to controls (p = 0.010). Both infected groups lost weight (p = 0.006 for both) and experienced limb swelling (p = 0.043 and p = 0.018, respectively). Joints inoculated with bacteria showed significant alterations in gait cycle with a decreased stance phase, increased swing phase, and a corresponding decrease in swing speed. Conclusion. Murine joints inoculated with Hla-producing 8325-4 experienced significantly more chondrocyte death than those with DU1090, which lack the toxin. This was despite similar immune responses, indicating that Hla was the major cause of chondrocyte death. Hla-deficient DU1090 also elevated chondrocyte death compared to controls, suggesting a smaller additional deleterious role of the immune system on cartilage. Cite this article: Bone Joint Res 2022;11(9):669–678


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 575 - 580
2 May 2022
Hamad C Chowdhry M Sindeldecker D Bernthal NM Stoodley P McPherson EJ

Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI.

Cite this article: Bone Joint J 2022;104-B(5):575–580.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 20 - 20
1 Mar 2021
Hofstee MI Riool M Thompson K Stoddart MJ Zaat SAJ Moriarty TF
Full Access

Staphylococcus aureus is the main cause of osteomyelitis and forms biofilm and staphylococcal abscess communities (SACs) in humans. While S. aureus has several toxins with specificity for human targets and working with human host cells would be preferred, for SACs no in vitro models, two-dimensional (2D) or three-dimensional (3D), have been described in literature to date. Advanced 3D in vitro cell culture models enable the incorporation of human cells and resemble in vivo tissue more closely than conventional 2D cell culture. Therefore, the aim of this study was to develop an in vitro model of SACs by using a 3D system. The model should allow for studies into antibiotic tolerance and S. aureus - human host cells interactions. With a clinical isolate (S. aureus JAR) or a lab strain (S. aureus ATCC 49230-GFP), SACs were grown in a collagen gel (1.78 mg/ml, Gibco) supplemented with 200 µl human plasma at 37 °C. Transmission and scanning electron microscopy was used to obtain a detailed overview of SACs, whereas immunofluorescent stainings were done to determine whether the pseudocapsule around SACs consist of fibrin. Antibiotic tolerance of SACs was assessed with 100× the minimal inhibitory concentration (MIC) of gentamicin (Roth). Bacterial clearance of non-establised SACs and established SACs with or without pseudocapsule was determined by exposure to differentiated PLB neutrophil-like cells (differentiation with 1.25% DMSO and 5% FBS for 5 days; dPLB) or primary neutrophils isolated with lymphoprep from fresh heparin blood. Degradation of the pseudocapsule was done with 7.5 µl/ml plasmin (Sigma). Colony forming unit (CFU) counts were performed as quantification method. Statistical analysis was performed with the ANOVA multiple comparison test or, when data was not normally distributed, with a Mann-Whitney U test. We have developed a 3D in vitro model of SACs which after overnight growth were on average 200 micrometers in diameter, consisted of 8 log10 CFUs and were surrounded by an inner and outer fibrin pseudocapsule. The in vitro grown SACs tolerated 100× the MIC of gentamicin for 24h and did not significantly differ from control SACs (p=0.1000). dPLB neutrophil-like cells or primary neutrophils did not clear established in vitro SACs (p=0.1102 and p=0.8767, respectively). When the fibrin pseudocapsule was degraded by the enzyme plasmin, dPLB neutrophil-like cells or primary neutrophils caused for a significant decrease in total CFU compared the SACs that did had a pseudocapsule (p=0.0333 and p=0.0272, respectively). The in vitro SACs model offers a tool for host-pathogen interaction and drug efficacy assessments and is a valuable starting point for future research


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 578 - 583
1 Mar 2021
Coulin B Demarco G Spyropoulou V Juchler C Vendeuvre T Habre C Tabard-Fougère A Dayer R Steiger C Ceroni D

Aims

We aimed to describe the epidemiological, biological, and bacteriological characteristics of osteoarticular infections (OAIs) caused by Kingella kingae.

Methods

The medical charts of all children presenting with OAIs to our institution over a 13-year period (January 2007 to December 2019) were reviewed. Among these patients, we extracted those which presented an OAI caused by K. kingae and their epidemiological data, biological results, and bacteriological aetiologies were assessed.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 234 - 244
1 Feb 2021
Gibb BP Hadjiargyrou M

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics.

Cite this article: Bone Joint J 2021;103-B(2):234–244.


Bone & Joint Research
Vol. 9, Issue 12 | Pages 870 - 872
21 Dec 2020
Tsang SJ Simpson AHRW


Bone & Joint Research
Vol. 9, Issue 9 | Pages 578 - 586
1 Sep 2020
Ma M Liang X Wang X Zhang L Cheng S Guo X Zhang F Wen Y

Aims. Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD. Methods. The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between COMP-overexpression groups and control groups were examined after cell transfection. Results. The mRNA and protein expression levels of COMP were significantly lower in KBD chondrocytes than control chondrocytes. After the T-2 toxin intervention, the COMP mRNA expression of C28/I2 chondrocyte reduced and the protein level of COMP in three intervention groups was significantly lower than in the control group. MTT assay showed that the survival rate of COMP overexpression KBD chondrocytes were notably higher than in the blank control group. The mRNA expression levels of Survivin, SOX9, Caspase-3, and type II collagen were also significantly different among COMP overexpression, negative control, and blank control groups. Conclusion. Our study results confirmed the functional relevance of COMP with KBD. COMP may play an important role in the excessive chondrocytes apoptosis of KBD patients. Cite this article: Bone Joint Res 2020;9(9):578–586


Bone & Joint Research
Vol. 8, Issue 6 | Pages 255 - 265
1 Jun 2019
Hernigou J Schuind F

Objectives

The aim of this study was to review the impact of smoking tobacco on the musculoskeletal system, and on bone fractures in particular.

Methods

English-language publications of human and animal studies categorizing subjects into smokers and nonsmokers were sourced from MEDLINE, The Cochrane Library, and SCOPUS. This review specifically focused on the risk, surgical treatment, and prevention of fracture complications in smokers.


Bone & Joint 360
Vol. 8, Issue 1 | Pages 37 - 39
1 Feb 2019


Bone & Joint Research
Vol. 7, Issue 7 | Pages 457 - 467
1 Jul 2018
Smith IDM Milto KM Doherty CJ Amyes SGB Simpson AHRW Hall AC

Objectives. Staphylococcus aureus (S. aureus) is the most commonly implicated organism in septic arthritis, a condition that may be highly destructive to articular cartilage. Previous studies investigating laboratory and clinical strains of S. aureus have demonstrated that potent toxins induced significant chondrocyte death, although the precise toxin or toxins that were involved was unknown. In this study, we used isogenic S. aureus mutants to assess the influence of alpha (Hla)-, beta (Hlb)-, and gamma (Hlg)-haemolysins, toxins considered important for the destruction of host tissue, on in situ bovine chondrocyte viability. Methods. Bovine cartilage explants were cultured with isogenic S. aureus mutants and/or their culture supernatants. Chondrocyte viability was then assessed within defined regions of interest in the axial and coronal plane following live- and dead-cell imaging using the fluorescent probes 5-chloromethylfluorescein diacetate and propidium iodide, respectively, and confocal laser-scanning microscopy. Results. Hla-producing mutants caused substantial chondrocyte death compared with the toxin-deficient control (Hla-Hlb-Hlg-), whilst mutants producing Hlb and Hlg in the absence of Hla induced minimal chondrocyte death. Coronal studies established that Hla-induced chondrocyte death started in the superficial zone of cartilage and spread to deeper layers, whereas Hlb and Hlg toxins were without significant effect. Conclusion. This study identified Hla as a highly potent S. aureus toxin that caused rapid chondrocyte death in bovine cartilage, with other toxins or metabolic products produced by the bacteria playing a minor role. The identification of Hla in mediating chondrocyte death may assist in the development of therapeutic strategies aimed at reducing the extent of cartilage damage during and after an episode of septic arthritis. Cite this article: I. D. M. Smith, K. M. Milto, C. J. Doherty, S. G. B. Amyes, A. H. R. W. Simpson, A. C. Hall. A potential key role for alpha-haemolysin of Staphylococcus aureus in mediating chondrocyte death in septic arthritis. Bone Joint Res 2018;7:457–467. DOI: 10.1302/2046-3758.77.BJR-2017-0165.R1


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 542 - 548
1 Apr 2018
Dayer R Alzahrani MM Saran N Ouellet JA Journeau P Tabard-Fougère A Martinez-Álvarez S Ceroni D

Aims

This multicentre, retrospective study aimed to improve our knowledge of primary pyogenic spinal infections in children by analyzing a large consecutive case series.

Patients and Methods

The medical records of children with such an infection, treated at four tertiary institutions between 2004 and 2014, were analyzed retrospectively. Epidemiological, clinical, paraclinical, radiological, and microbiological data were evaluated. There were 103 children, of whom 79 (76.7%) were aged between six months and four years.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 90 - 90
1 Dec 2017
Kolenda C Josse J Sierra R Renzoni A Laurent F
Full Access

Aim. Toxin-antitoxin (TA) systems are small genetics elements found in the majority of bacteria which encode a toxin causing bacterial growth arrest and an antitoxin counteracting the toxic effect. In Salmonella and E. coli, TA systems were shown to be involved in the formation of persisters. Persisters are a bacterial subpopulation with low growth rate and high tolerance to antibiotics. They could be responsible for antibiotic treatment failure in chronic infections and relapses, notably in bone and joint infections (BJI) caused by Staphylococcus aureus. Currently, two type II TA system families were described in S. aureus, mazEF and axe/txe, but their physiological roles are not well described. In this work, we studied the importance of mazEF in the intracellular survival of S. aureus inside osteoblasts, one of the mechanisms considered in the chronicity of S. aureus BJI. Methods. Using an ex vivo model of intracellular infection of human osteoblast-like cells (MG-63), two strains of S. aureus HG003 wild type and its isogenic mutant HG003 ΔmazEF were compared in terms of : i) internalization and intracellular survival by lysostaphin protective assay and ii) cytotoxicity by quantifying LDH in the culture supernatant, 24h and 48h after infection. Results. The comparison of the two strains revealed that HG003 ΔmazEF had a lower capacity to be internalized by osteoblasts compared to the wild type (p=0.02). However, intracellular survival was greater for HG003 ΔmazEF compared to the wild type 24h and 48h post-infection (p=0.02 and 0.001 respectively). Concerning the bacteria-induced cell death, HG003 ΔmazEF appeared to be less cytotoxic than the wild type strain at 24h post infection (p=0.007) whereas no more differences could be observed after 48h. This delayed cytotoxicity with HG003 ΔmazEF was also observed after incubation of culture supernatants with osteoblasts during 8 hours, suggesting that the differences observed could be caused by a secreted molecule. Conclusions. Our results suggest that the mazEF system could be involved in S. aureus BJI physiopathology regulating cytotoxicity and persistence in osteoblasts. Our prospect is to identify the target of the mazF toxin which could be a therapeutic target


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_14 | Pages 3 - 3
1 Aug 2017
Mohan R Gopakumar T Unnikrishnan N
Full Access

Intramuscular injections of botulinum neuro toxin A (BoNT-A) have been a cornerstone in the treatment of spasticity for the last two decades. In India, the treatment is now offered to children with spastic cerebral palsy (CP). However, despite its use, the evidence for its functional effects is limited and inconclusive. The objective of this study is to determine whether BoNT-A makes walking easier in children with CP. We hypothesize that injections with BoNT-A will not reduce energy cost during walking, improve walking capacity, reduce pain or improve self-perceived performance and satisfaction. Between the period of 2012 and 2014, 35 children with spastic CP less than 10 years of age were included. The patients were classified according to their gross motor function classification system (GMFCS) and their pre-and post-injection gait analysis were performed. Spasticity assessed by Modified Ashworth Score [MAS]. Trained parents were utilised for the post injection physiotherapy as these children will be more complaint to them. GMFCS and MAS scoring done every three months till one year follow up. Therapeutically, effect was found in 90% of the patients, an average duration of the medical effect was 6–12 months. The improvement in GMFC functional score in serial measurements was seen in these patients though some deterioration in spasticity scores at one year. Despite mild recurrence in spasticity, majority maintained independent (42%) or assisted ambulation (48%) at one year. No major side effects occurred. Botox may prove a useful adjuvant in conservative management of the spasticity of cerebral palsy. Apart from being very cost effective in these financially deprived populations, successful management with these injections may allow delay of surgical intervention until the child is older and at less risk of possible complications, including the need for repeated surgical procedures


Bone & Joint Research
Vol. 6, Issue 5 | Pages 315 - 322
1 May 2017
Martinez-Perez M Perez-Jorge C Lozano D Portal-Nuñez S Perez-Tanoira R Conde A Arenas MA Hernandez-Lopez JM de Damborenea JJ Gomez-Barrena E Esbrit P Esteban J

Objectives

Implant-related infection is one of the most devastating complications in orthopaedic surgery. Many surface and/or material modifications have been developed in order to minimise this problem; however, most of the in vitro studies did not evaluate bacterial adhesion in the presence of eukaryotic cells, as stated by the ‘race for the surface’ theory. Moreover, the adherence of numerous clinical strains with different initial concentrations has not been studied.

Methods

We describe a method for the study of bacterial adherence in the presence of preosteoblastic cells. For this purpose we mixed different concentrations of bacterial cells from collection and clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells, and analysed the minimal concentration of bacteria able to colonise the surface of the material with image analysis.