Aims. The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in
This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.Aims
Methods
While high-performance ceramics like alumina and zirconia exhibit excellent wear resistance, they provide poor osseointegration capacity. As osseointegration is crucial for non-cemented joint prostheses, new techniques have been successfully developed for biofunctionalizing high-performance ceramic surfaces. Stable cell adhesion can be achieved by covalently bound specific peptides. In this study we investigate the effect of sterilization processes on organo-chemically functionalized surfaces. To enhance the performance of alumina-toughened zirconia ceramics (ATZ), a 3-aminopropyldiisopropylethoxysilane (APDS) monolayer was applied and coupled with cyclo-RGD peptides (cRGD) by using bifunctional crosslinker bis(sulfosuccinimidyl)suberat (BS³). The samples were sterilized using e-beam or gamma-sterilization at 25 kGy, either before or after biofunctionalization with cRGD. Functionalization stability was investigated by contact angle measurements. The functionality of cRGD after sterilization was demonstrated using proliferation tests and cytotoxicity assays. Immunofluorescence staining (pFAK, Actin, DAPI) was conducted to evaluate the adhesion potential between the samples and
The current procedures being applied in the clinical setting to address osteoporosis-related delayed union and nonunion bone fractures have been found to present mostly suboptimal outcomes. As a result, bone tissue engineering (BTE) solutions involving the development of implantable biomimetic scaffolds to replace damaged bone and support its regeneration are gaining interest. The piezoelectric properties of the bone tissue, which stem primarily from the significant presence of piezoelectric type I collagen fibrils in the tissue's extracellular matrix (ECM), play a key role in preserving the bone's homeostasis and provide integral assistance to the regeneration process. However, despite their significant potential, these properties of bone tend to be overlooked in most BTE-related studies. In order to bridge this gap in the literature, novel hydroxyapatite (HAp)-filled osteoinductive and piezoelectric poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TrFE) electrospun nanofibers were developed to replicate the bone's fibrous ECM composition and electrical features. Different HAp nanoparticle concentrations (1–10%, wt%) were tested to assess their effect on the physicochemical and biological properties of the resulting fibers. The fabricated scaffolds displayed biomimetic collagen fibril-like diameters, while also presenting mechanical features akin to type I collagen. The increase in HAp presence was found to enhance both surface and piezoelectric properties of the fibers, with an improvement in scaffold wettability and increase in β-phase nucleation (translating to increased piezoelectricity) being observed. The HAp-containing scaffolds also exhibited an augmented bioactivity, with a more comprehensive surface mineralization of the fibers being obtained for the scaffolds with the highest HAp concentrations. Improved osteogenic differentiation of seeded
Bone defects can result from different incidents such as acute trauma, infection or tumor resection. While in most instances bone healing can be achieved given the tissue's innate ability of self-repair, for critical-sized defects spontaneous regeneration is less likely to occur, therefore requiring surgical intervention. Current clinical procedures have failed to adequately address this issue. For this reason, bone tissue engineering (BTE) strategies involving the use of synthetic grafts for replacing damaged bone and promoting the tissue's regeneration are being investigated. The electrical stimulation (ES) of bone defects using direct current has yielded very promising results, with neo tissue formation being achieved in the target sites in vivo. Electroactive implantable scaffolds comprised by conductive biomaterials could be used to assist this kind of therapy by either directing the ES specifically to the damaged site or promoting the integration of electrodes within the bone tissue as a coating. In this study, we developed novel conductive heat-treated polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning capable of mimicking key native features of the bone tissue's extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The developed scaffolds were doped with sulfuric acid and mineralized in Simulated Body Fluid to mimic the inorganic phase of bone ECM. As expected, the doped PAN/PEDOT:PSS nanofibers exhibited electroconductive properties and were able to preserve their fibrous structure. The addition of PEDOT:PSS was found to improve the bioactivity of the scaffolds, with a more significant in vitro mineralization being obtained. By seeding the scaffolds with MG-63 osteoblasts and
The regenerative capacity of hyaline cartilage is greatly limited. To prevent the onset of osteoarthritis, cartilage defects have to be properly treated. Cartilage, tissue engineered by mean of bioactive glass (BG) scaffolds presents a promising approach. Until now, conventional BGs have been used mostly for bone regeneration, as they are able to form a hydroxyapatite (HA) layer and are therefore, less suited for cartilage reconstruction. The aim of this study is to compare two BGs based on a novel BG composition tailored specifically for cartilage (CAR12N) and patented by us with conventional BG (BG1393) with a similar topology. The highly porous scaffolds consisting of 100% BG (CAR12N, CAR12N with low Ca2+/Mg2+ and BG1393) were characterized and dynamically seeded with primary porcine articular chondrocytes (pACs) or primary
Bone homeostasis is a highly regulated process involving pathways in bone as WNT, FGF or BMP, but also requiring support from surrounding tissues as vessels and nerves. In bone diseases, the bone-vessel-nerve triad is impacted. Recently, new players appeared as regulators of bone homeostasis: microRNAs (miRNA). Five miRNAs associated with osteoporotic fractures are already known, among which miR-125b is decreasing bone formation by downregulating
Aims. Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of
3D printing and Bioprinting technologies are becoming increasingly popular in surgery to provide a solution for the regeneration of healthy tissues. The aim of our project is the regeneration of articular cartilage via bioprinting means, to manage isolated chondral defects. Chrondrogenic hydrogel (chondrogel: GelMa + TGF-b3 and BMP6) was prepared and sterilised in our lab following our standard protocols.
After a few passages of in vitro culture, primary human articular chondrocytes undergo senescence and loss of their phenotype. Most of the available chondrocyte cell lines have been obtained from cartilage tissues different from diarthrodial joints, and their utility for osteoarthritis (OA) research is reduced. Thus, the goal of this research was the development of immortalized chondrocyte cell lines proceeded from the articular cartilage of patients with and without OA. Using telomerase reverse transcriptase (hTERT) and SV40 large T antigen (SV40LT), we transduced primary OA articular chondrocytes. Proliferative capacity, degree of senescence, and chondrocyte surface antigen expression in transduced chondrocytes were evaluated. In addition, the capacity of transduced chondrocytes to synthesize a tissue similar to cartilage and to respond to interleukin (IL)-1β was assessed.Aims
Methods
Aims. The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects. Methods. HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM).
Minimally invasive surgery for the restoration of bone tissues lost due to diseases and trauma is preferred by the health care system as the related costs are continuously increasing. Recently, efforts have been paid to optimize injectable calcium phosphate (CaP) cements which have been recognized as excellent alloplastic material for osseous augmentation because of their unique combination of osteoconductivity, biocompatibility and mouldability. The sol-gel synthesis approach appears to be the most suitable route towards performing injectable calcium phosphates. Different strategies used to prepare bioactive and osteoinductive injectable CaP are reported. CaP gels complexed with phosphoserine-tethered poly(ε-lysine) dendrons (G3-K PS) designed to interact with the ceramic phase and able to induce osteogenic differentiation of
Introduction and Objective. Alveolar bone resorption following tooth extraction or periodontal disease compromises the bone volume required to ensure the stability of an implant. Guided bone regeneration (GBR) is one of the most attractive technique for restoring oral bone defects, where an occlusive membrane is positioned over the bone graft material, providing space maintenance required to seclude soft tissue infiltration and to promote bone regeneration. However, bone regeneration is in many cases impeded by a lack of an adequate tissue vascularization and/or by bacterial contamination. Using simultaneous spray coating of interacting species (SSCIS) process, a bone inspired coating made of calcium phosphate-chitosan-hyaluronic acid was built on one side of a nanofibrous GBR collagen membrane in order to improve its biological properties. Materials and Methods. First, the physicochemical characterizations of the resulting hybrid coating were performed by scanning electron microscopy, X-ray photoelectron, infrared spectroscopies and high-resolution transmission electron microscopy. Then
Circular RNAs (circRNAs) are a novel type of non-coding RNA that plays major roles in the development of diverse diseases including osteonecrosis of the femoral head (ONFH). Here, we explored the impact of hsa_circ_0066523 derived from forkhead box P1 (FOXP1) (also called circFOXP1) on bone mesenchymal stem cells (BMSCs), which is important for ONFH development. RNA or protein expression in BMSCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell Counting Kit 8 (CCK8) and 5-ethynyl-2’-deoxyuridine (EdU) were used to analyze cell proliferation. Alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red S staining were employed to evaluate the osteoblastic differentiation. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pull down, and RNA immunoprecipitation (RIP) assays were combined for exploring molecular associations.Aims
Methods
Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth. Cite this article:
The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods.Aims
Methods
Numerous implanted hip and knee joint arthroplasties have to be replaced due to early or late loosening of the implant, a failure of osteointegration with fibrous tissue at the bone-implant-interface. This could be counteracted by ensuring that cells which attach to the implant surface differentiate towards bone cells afterwards. For this reason,
Aims. Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in
Bioactive glasses, such as 45S5 Bioglass (BG), have been shown to promote bone ingrowth both in vitro and in vivo. The goal of this study was to analyze the effect of a high dose of BG (20%) in Direct Ink Writing (DIW)-produced controlled-geometry PCL-BG composite scaffolds in both their mechanical and biological performance. Porous cubes of 5 × 5 × 5 mm, 50% porosity and pore size and strut diameter of 400 µm were fabricated in a 3D-Bioplotter (EnvisionTec) to investigate their biological performance (n = 3). Additionally, cylindrical specimens (10 mm diameter; 15 mm height) with same internal structure were fabricated for mechanical testing (n = 6). The cylindrical specimens were tested by compression in a universal testing machine (ZwickRoell) with a 10 kN load cell. The tests were performed at 1.00 mm/min with extensometers in both sides. For biological characterization, scaffolds were sterilized in 70% ethanol overnight and pre-incubated with DMEM for 1 hour at room temperature. 1×10. 5.
The use of stem cells transplanted into the intervertebral disc (IVD) is a promising regenerative approach to treat intervertebral disc degeneration (IDD). The aim of this study was to assess the effect of a hydrogel composed of hyaluronic acid (HA) and platelet-rich plasma (PRP) loaded with