Advertisement for orthosearch.org.uk
Results 1 - 20 of 106
Results per page:
Bone & Joint Open
Vol. 5, Issue 3 | Pages 227 - 235
18 Mar 2024
Su Y Wang Y Fang C Tu Y Chang C Kuan F Hsu K Shih C

Aims

The optimal management of posterior malleolar ankle fractures, a prevalent type of ankle trauma, is essential for improved prognosis. However, there remains a debate over the most effective surgical approach, particularly between screw and plate fixation methods. This study aims to investigate the differences in outcomes associated with these fixation techniques.

Methods

We conducted a comprehensive review of clinical trials comparing anteroposterior (A-P) screws, posteroanterior (P-A) screws, and plate fixation. Two investigators validated the data sourced from multiple databases (MEDLINE, EMBASE, and Web of Science). Following PRISMA guidelines, we carried out a network meta-analysis (NMA) using visual analogue scale and American Orthopaedic Foot and Ankle Score (AOFAS) as primary outcomes. Secondary outcomes included range of motion limitations, radiological outcomes, and complication rates.


Bone & Joint 360
Vol. 13, Issue 1 | Pages 22 - 26
1 Feb 2024

The February 2024 Wrist & Hand Roundup360 looks at: Occupational therapy for thumb carpometacarpal osteoarthritis?; Age and patient-reported benefits from operative management of intra-articular distal radius fractures: a meta-regression analysis; Long-term outcomes of nonsurgical treatment of thumb carpometacarpal osteoarthritis: a cohort study; Semi-occlusive dressing versus surgery in fingertip injuries: a randomized controlled trial; Re-fracture in partial union of the scaphoid waist?; The WALANT distal radius fracture: a systematic review; Endoscopic carpal tunnel release with or without hand therapy?; Ten-year trends in the level of evidence in hand surgery.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 82 - 82
2 Jan 2024
Barcik J Ernst M Buchholz T Constant C Mys K Epari D Zeiter S Gueorguiev B Windolf M
Full Access

Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing. A partial tibial osteotomy was created in twelve Swiss White Alpine sheep and stabilized using an active external fixator that induced well-controlled interfragmentary motion in form of a strain gradient. Animals were randomly assigned into two groups which mimicked early (immediate group) and late (delayed group) weight-bearing. The immediate group received daily stimulation (1000 cycles/day) from the first day post-op and the delayed group from the 22nd day post-op. Healing progression was evaluated by measurements of the stiffness of the repair tissue during mechanical stimulation and by quantifying callus area on weekly radiographs. At the end of the five weeks period, callus volume was measured on the post-mortem high-resolution computer tomography (HRCT) scan. Stiffness of the repair tissue (p<0.05) and callus progression (p<0.01) on weekly radiographs were significantly larger for the immediate group compared to the delayed group. The callus volume measured on the HRCT was nearly 3.2 times larger for the immediate group than for the delayed group (p<0.01). This study demonstrates that the absence of immediate mechanical stimuli delays callus formation, and that mechanical stimulation already applied in the early post-op phase promotes bone healing


Bone & Joint Research
Vol. 12, Issue 10 | Pages 657 - 666
17 Oct 2023
Sung J Barratt KR Pederson SM Chenu C Reichert I Atkins GJ Anderson PH Smitham PJ

Aims. Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Methods. Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq). Results. Radiographs and histology demonstrated impaired fracture healing in ZDF rats with incomplete bony bridge formation and an influx of intramedullary inflammatory tissue. In comparison, near-complete bridging between cortices was observed in Sham WT animals. Of 13,160 genes, mRNA-Seq analysis identified 13 that were differentially expressed in ZDF rat callus, using a false discovery rate (FDR) threshold of 10%. Seven genes were upregulated with high confidence (FDR = 0.05) in ZDF fracture callus, most with known roles in inflammation. Conclusion. These findings suggest that elevated or prolonged inflammation contributes to delayed fracture healing in T2DM. The identified genes may be used as biomarkers to monitor and treat delayed fracture healing in diabetic patients. Cite this article: Bone Joint Res 2023;12(10):657–666


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 801 - 807
1 Jul 2023
Dietrich G Terrier A Favre M Elmers J Stockton L Soppelsa D Cherix S Vauclair F

Aims

Tobacco, in addition to being one of the greatest public health threats facing our world, is believed to have deleterious effects on bone metabolism and especially on bone healing. It has been described in the literature that patients who smoke are approximately twice as likely to develop a nonunion following a non-specific bone fracture. For clavicle fractures, this risk is unclear, as is the impact that such a complication might have on the initial management of these fractures.

Methods

A systematic review and meta-analysis were performed for conservatively treated displaced midshaft clavicle fractures. Embase, PubMed, and Cochrane Central Register of Controlled Trials (via Cochrane Library) were searched from inception to 12 May 2022, with supplementary searches in Open Grey, ClinicalTrials.gov, ProQuest Dissertations & Theses, and Google Scholar. The searches were performed without limits for publication date or languages.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 15 - 15
17 Apr 2023
Inglis B Inacio J Dailey H
Full Access

Virtual mechanical testing is a method for measuring bone healing using finite element models built from computed tomography (CT) scans. Previously, we validated a dual-zone material model for ovine fracture callus that differentiates between mineralized woven bone and soft tissue based on radiodensity. 1. The objective of this study was to translate the dual-zone material model from sheep to two important clinical scenarios: human tibial fractures in early-stage healing and late-stage nonunions. CT scans for N = 19 tibial shaft fractures were obtained prospectively at 12 weeks post-op. A second group of N = 33 tibial nonunions with CT scans were retrospectively identified. The modeling techniques were based on our published method. 2. The dual-zone material model was implemented for humans by performing a cutoff sweep for both the 12-week and nonunion groups. Virtual torsional rigidity (VTR) was calculated as VTR = ML/φ [N-m. 2. /°], where M is the moment reaction, L is the diaphyseal segment length, and φ is the angle of twist. As the soft tissue cutoff was increased, the rigidity of the clinical fractures decreased and soft tissue located within the fracture gaps produced higher strains that are not predicted without the dual zone approach. The structural integrity of the nonunions varied, ranging from very low rigidities in atrophic cases to very high rigidities in highly calcified hypertrophic cases, even with dual-zone material modeling. Human fracture calluses are heterogeneous, comprising of woven bone and interstitial soft tissue. Use of a dual-zone callus material model may be instrumental in identifying delayed unions during early healing when callus formation is minimal and/or predominantly fibrous with little mineralization. ACKNOWLEDGEMENTS:. This work was supported by the National Science Foundation (NSF) grant CMMI-1943287


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 6 - 6
11 Apr 2023
Kronenberg D Everding J Wendler L Brand M Timmen M Stange R
Full Access

Integrin α2β1 is one of the major transmembrane receptors for fibrillary collagen. In native bone we could show that the absence of this protein led to a protective effect against age-related osteoporosis. The objective of this study was to elucidate the effects of integrin α2β1 deficiency on fracture repair and its underlying mechanisms. Standardised femoral fractures were stabilised by an intramedullary nail in 12 week old female C57Bl/6J mice (wild type and integrin α2. -/-. ). After 7, 14 and 28 days mice were sacrificed. Dissected femura were subjected to µCT and histological analyses. To evaluate the biomechanical properties, 28-day-healed femura were tested in a torsional testing device. Masson goldner staining, Alizarin blue, IHC and IF staining were performed on paraffin slices. Blood serum of the animals were measured by ELISA for BMP-2. Primary osteoblasts were analysed by in/on-cell western technology and qRT-PCR. Integrin α2β1 deficient animals showed earlier transition from cartilaginous callus to mineralized callus during fracture repair. The shift from chondrocytes over hypertrophic chondrocytes to bone-forming osteoblasts was accelerated. Collagen production was increased in mutant fracture callus. Serum levels of BMP-2 were increased in healing KO mice. Isolated integrin deficient osteoblast presented an earlier expression and production of active BMP-2 during the differentiation, which led to earlier mineralisation. Biomechanical testing showed no differences between wild-type and mutant bones. Knockout of integrin α2β1 leads to a beneficial outcome for fracture repair. Callus maturation is accelerated, leading to faster recovery, accompanied by an increased generation of extra-cellular matrix material. Biomechanical properties are not diminished by this accelerated healing. The underlying mechanism is driven by an earlier availability of BMP-2, one main effectors for bone development. Local inhibition of integrin α2β1 is therefore a promising target to accelerate fracture repair, especially in patients with retarded healing


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims

Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood.

Methods

MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 49 - 60
1 Feb 2022
Li J Wong RMY Chung YL Leung SSY Chow SK Ip M Cheung W

Aims

With the ageing population, fragility fractures have become one of the most common conditions. The objective of this study was to investigate whether microbiological outcomes and fracture-healing in osteoporotic bone is worse than normal bone with fracture-related infection (FRI).

Methods

A total of 120 six-month-old Sprague-Dawley (SD) rats were randomized to six groups: Sham, sham + infection (Sham-Inf), sham with infection + antibiotics (Sham-Inf-A), ovariectomized (OVX), OVX + infection (OVX-Inf), and OVX + infection + antibiotics (OVX-Inf-A). Open femoral diaphysis fractures with Kirschner wire fixation were performed. Staphylococcus aureus at 4 × 104 colony-forming units (CFU)/ml was inoculated. Rats were euthanized at four and eight weeks post-surgery. Radiography, micro-CT, haematoxylin-eosin, mechanical testing, immunohistochemistry (IHC), gram staining, agar plating, crystal violet staining, and scanning electron microscopy were performed.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1648 - 1655
1 Nov 2021
Jeong S Hwang K Oh C Kim J Sohn OJ Kim JW Cho Y Park KC

Aims

The incidence of atypical femoral fractures (AFFs) continues to increase. However, there are currently few long-term studies on the complications of AFFs and factors affecting them. Therefore, we attempted to investigate the outcomes, complications, and risk factors for complication through mid-term follow-up of more than three years.

Methods

From January 2003 to January 2016, 305 patients who underwent surgery for AFFs at six hospitals were enrolled. After exclusion, a total of 147 patients were included with a mean age of 71.6 years (48 to 89) and 146 of whom were female. We retrospectively evaluated medical records, and reviewed radiographs to investigate the fracture site, femur bowing angle, presence of delayed union or nonunion, contralateral AFFs, and peri-implant fracture. A statistical analysis was performed to identify the significance of associated factors.


Bone & Joint Research
Vol. 10, Issue 11 | Pages 714 - 722
1 Nov 2021
Qi W Feng X Zhang T Wu H Fang C Leung F

Aims

To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model.

Methods

A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme.


Bone & Joint Research
Vol. 10, Issue 3 | Pages 192 - 202
1 Mar 2021
Slimi F Zribi W Trigui M Amri R Gouiaa N Abid C Rebai MA Boudawara T Jebahi S Keskes H

Aims

The present study investigates the effectiveness of platelet-rich plasma (PRP) gel without adjunct to induce cartilage regeneration in large osteochondral defects in a rabbit model.

Methods

A bilateral osteochondral defect was created in the femoral trochlear groove of 14 New Zealand white rabbits. The right knees were filled with PRP gel and the contralateral knees remained untreated and served as control sides. Some animals were killed at week 3 and others at week 12 postoperatively. The joints were harvested and assessed by Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) MRI scoring system, and examined using the International Cartilage Repair Society (ICRS) macroscopic and ICRS histological scoring systems. Additionally, the collagen type II content was evaluated by the immunohistochemical staining.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 41 - 50
1 Jan 2021
Wong RMY Choy VMH Li J Li TK Chim YN Li MCM Cheng JCY Leung K Chow SK Cheung WH

Aims

Fibrinolysis plays a key transition step from haematoma formation to angiogenesis and fracture healing. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical modality proven to enhance fibrinolytic factors. This study investigates the effect of LMHFV on fibrinolysis in a clinically relevant animal model to accelerate osteoporotic fracture healing.

Methods

A total of 144 rats were randomized to four groups: sham control; sham and LMHFV; ovariectomized (OVX); and ovariectomized and LMHFV (OVX-VT). Fibrinolytic potential was evaluated by quantifying fibrin, tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) along with healing outcomes at three days, one week, two weeks, and six weeks post-fracture.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 121 - 121
1 Dec 2020
Haffner-Luntzer M Fischer V Ignatius A
Full Access

Mice are increasingly used for fracture healing research because of the possibility to use transgenic animals to conduct research on the molecular level. Mice from both sexes can be used, however, there is no consensus in the literature if fracture healing differs between female and male mice. Therefore, the aim of the present study was to analyze the similarities and differences in endochondral fracture healing between female and male C57BL/6J mice, since this mouse strain is mainly used in bone research. For that purpose, 12-weeks-old female and male mice received a standardized femur midshaft osteotomy stabilized by an external fixator. Mice were euthanized 10 and 21 days after fracture and bone regeneration was analyzed by biomechanical testing, µCT analysis, histology, immunohistochemistry and gene expression analysis. At day 21, male mice displayed a significantly larger fracture callus than female mice accompanied by higher number of osteoclasts, higher tissue mineral density and absolute values of bone volume, whereas relative bone volume to tissue volume ratio did not differ between the groups. Biomechanical testing revealed significantly increased bending stiffness in both fractured and intact femurs from male vs. female mice, whereas relative bending stiffness of fractured femurs related to the intact femurs did not differ. 10 days after fracture, male mice display significantly more cartilage and less fibrous tissue area in the fracture callus than female mice, whereas bone area did not differ. On the molecular level, male mice displayed increased active β-catenin expression in the fracture callus, whereas estrogen receptor α (ERα) expression was reduced. In conclusion, male mice showed more prominent cartilaginous callus formation, increased mineralization and whole callus tissue formation, whereas functional outcome after fracture did not differ from female mice. This might be due either to the heavier weight of male mice or because of differences in molecular signaling pathways


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 84 - 84
1 Dec 2020
Gümüşoğlu E Öztuna FV Asfuroğlu ZM Demirbağ HO Aktaş S Kızıltuğ MT Erdal ME
Full Access

Fracture healing is an issue that has not yet been fully elucidated. It is generally accepted in the literature that head trauma accelerates fracture healing and causes higher volume callus tissue. Recent studies have examined the relationship between head trauma and fracture healing more molecularly. Based on this research; the aim of this study is to show the effect of head trauma on fracture healing radiologically and histologically and to investigate the relationship between serum β-Catenin level and fracture healing with the experiment we performed on rats. A total of 36 Wistar Albino female rats with a mean age of 24 weeks were included in the study with the permission of Mersin University Animal Experiments Local Ethics Committee. Six rats in the first group were not traumatized and their blood samples were collected on the day of the experiment started, end of the third week and end of the sixth week. In the second group, only head trauma was performed and blood samples were collected at the end of the third and sixth weeks. In the third group, only open femoral fracture model was applied, blood samples were collected at the third and sixth weeks and AP and Lateral radiographs of the fractured femurs were taken. After sacrification, femurs were dissected from the surrounding soft tissues and subjected to histological examination. In the fourth group, both head trauma and open femur fracture model were applied, blood samples were collected at the end of third and sixth weeks and AP and Lateral radiographs of the fractured femurs were taken. After sacrification, femurs were dissected from the surrounding soft tissues and subjected to histological examination. The expression level of β-Catenin was measured by PCR from all blood samples. Direct radiographs of the third and fourth groups at 3 and 6 weeks were evaluated by two orthopedists according to Rust and Lane & Sandhu scoring system. The histomorphometric examination was performed by evaluating the Huo scoring and the ratio of fracture callus components (cartilage callus, bone callus, fibrous callus) to areas. According to PCR analysis, the change of expression of β-Catenin by weeks was not statistically significant in the first and second groups. However, a statistically significant decrease was observed in the 0–6 week interval in the third and fourth groups (p = 0.002, p <0.0001, respectively). In the radiological examination, the union scores of the rats with head trauma + femoral fracture were higher than the isolated femoral fractures at 3 weeks and 6 weeks. In histomorphometric examination, no statistically significant difference was found between head trauma + femur fracture group and isolated femur fracture group. In addition, there was no correlation between the groups in the correlation studies between radiological findings, histomorphmetric findings and PCR findings. Considering that each molecule involved in fracture healing processes has a time interval and concentration; We concluded that the expression levels of β-catenin can be repeated in smaller time periods including the early stages of fracture healing


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 47 - 47
1 Aug 2020
Niedermair T Straub R Grässel S
Full Access

Previously, we reported impaired biomechanical bone properties and inferior bone matrix quality in tachykinin1 (Tac1)-deficient mice lacking the sensory neuropeptide substance P (SP). Additionally, fracture callus development is affected by the absence of SP indicating a critical effect of sensory nerve fibers on bone health and regeneration. For α-calcitonin gene-related peptide (α-CGRP)-deficient mice, a profound distortion of bone microarchitecture has also been described. We hypothesize that SP and α-CGRP modulate inflammatory as well as pain-related processes and positively affect bone regeneration during impaired fracture healing under osteoporotic conditions. Therefore, this study investigates the effects of SP and α-CGRP on fracture healing and fracture-related pain processes under conditions of experimental osteoporosis using SP- and α-CGRP-deficient mice and WT controls. We ovariectomized female WT, Tac1−/− and α-CGRP−/− mice (age 10 weeks, all strains on C57Bl/6J background) and set intramedullary fixed femoral fractures in the left femora 28 days later. We analyzed pain threshold (Dynamic Plantar Aesthesiometer Test) and locomotion (recorded at day and night, each for 1 hour, EthoVision®XT, Noldus) at 5, 9, 13, 16 and 21 days after fracture. At each time point, fractured femora were prepared for histochemical analysis of callus tissue composition (alcian blue/sirius red staining). Pain threshold is significantly higher in Tac1−/− mice 13 days after fracture and tends to be higher after 21 days compared to WT controls. In contrast, touch sensibility was similar in α-CGRP−/− mice and WT controls but compared to Tac1−/− mice pain threshold was significantly lower in α-CGRP−/− mice 13 and 16 days and tends to be lower 21 days after fracture. Locomotion of Tac1−/− mice during daylight was by trend higher 9 days after fracture and significantly higher 16 days after fracture whereas nightly locomotion is reduced compared to WT mice. Analysis of locomotion during daylight or night revealed no differences between α-CGRP−/− and WT mice. During early fracture healing phase, 5 and 9 days after fracture, transition of mesenchymal to cartilaginous callus tissue tends to be faster in Tac1−/− mice compared to WT controls whereas no difference was observed during late stage of fracture healing, 13, 16 and 21 days after fracture. In contrast, callus tissue maturation seems to be similar in α-CGRP−/− and WT mice. Our data indicate different effects of SP and α-CGRP on fracture healing under conditions of experimental osteoporosis as a model for impaired bone tissue. Lack of α-CGRP seems to have no effects, but loss of SP affects locomotion throughout osteoporotic fracture healing and fracture-related pain processes during late phases of osteoporotic fracture healing. This indicates a modified role of SP during fracture healing under impaired versus healthy conditions, where SP changed early fracture-related pain processes and had no influence on callus tissue composition


Bone & Joint Research
Vol. 9, Issue 7 | Pages 368 - 385
1 Jul 2020
Chow SK Chim Y Wang J Wong RM Choy VM Cheung W

A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing.

Cite this article: Bone Joint Res 2020;9(7):368–385.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 99 - 107
1 Mar 2020
Chang C Jou I Wu T Su F Tai T

Aims

Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs fracture healing are not fully understood. There are few studies reporting the effects of cigarette smoking on new blood vessel formation during the early stage of fracture healing. We tested the hypothesis that cigarette smoke inhalation may suppress angiogenesis and delay fracture healing.

Methods

We established a custom-made chamber with airflow for rats to inhale cigarette smoke continuously, and tested our hypothesis using a femoral osteotomy model, radiograph and microCT imaging, and various biomechanical and biological tests.


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1416 - 1422
1 Nov 2019
Rohilla R Sharma PK Wadhwani J Rohilla S Beniwal R Singh R Devgan A

Aims

In this randomized study, we aimed to compare quality of regenerate in monolateral versus circular frame fixation in 30 patients with infected nonunion of tibia.

Patients and Methods

Both groups were comparable in demographic and injury characteristics. A phantom (aluminium step wedge of increasing thickness) was designed to compare the density of regenerate on radiographs. A CT scan was performed at three and six months postoperatively to assess regenerate density. A total of 30 patients (29 male, one female; mean age 32.54 years (18 to 60)) with an infected nonunion of a tibial fracture presenting to our tertiary institute between June 2011 and April 2016 were included in the study.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 472 - 480
1 Oct 2019
Hjorthaug GA Søreide E Nordsletten L Madsen JE Reinholt FP Niratisairak S Dimmen S

Objectives

Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on fracture healing. This study aimed to assess the effect of immediate and delayed short-term administration of clinically relevant parecoxib doses and timing on fracture healing using an established animal fracture model.

Methods

A standardized closed tibia shaft fracture was induced and stabilized by reamed intramedullary nailing in 66 Wistar rats. A ‘parecoxib immediate’ (Pi) group received parecoxib (3.2 mg/kg bodyweight twice per day) on days 0, 1, and 2. A ‘parecoxib delayed’ (Pd) group received the same dose of parecoxib on days 3, 4, and 5. A control group received saline only. Fracture healing was evaluated by biomechanical tests, histomorphometry, and dual-energy x-ray absorptiometry (DXA) at four weeks.