Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_13 | Pages 10 - 10
17 Jun 2024
Malhotra K Patel S Cullen N Welck M
Full Access

Background. The cavovarus foot is a complex 3-dimensional deformity. Although a multitude of techniques are described for its surgical management, few of these are evidence based or guided by classification systems. Surgical management involves realignment of the hindfoot and soft tissue balancing, followed by forefoot balancing. Our aim was to classify the pattern of residual forefoot deformities once the hindfoot is corrected, to guide forefoot correction. Methods. We included 20 cavovarus feet from adult patients with Charcot-Marie-Tooth who underwent weightbearing CT (mean age 43.4 years, 14 males). Patients included had flexible deformities, with no previous surgery. Previous work established majority of rotational deformity in cavovarus feet occurs at the talonavicular joint, which is often reduced during surgery. Using specialised software (Bonelogic 2.1, Disior) a 3-dimensional, virtual model was created. Using data from normal feet as a guide, the talonavicular joint of the cavovarus feet was digitally reduced to a ‘normal’ position. Models of the corrected position were exported and geometrically analysed using Blender 3.6 to identify anatomical trends. Results. We identified 3 types of cavovarus forefoot morphotypes. Type 1 was seen in 13 cases (65%) and was defined as a foot where only the first metatarsal was relatively plantarflexed to the rest of the foot, with no significant residual adduction after talonavicular correction. Type 2 was seen in 4 cases (20%) and was defined as a foot where the second and first metatarsals were progressively plantarflexed, with no significant adduction. Type 3 was seen in 3 cases (15%) and was defined as a foot where the metatarsals were still adducted after talonavicular de-rotation. Conclusion. We classify 3 forefoot morphotypes in cavovarus feet. It is important to recognise and anticipate the residual forefoot deformities after hindfoot correction as different treatment strategies may be required for different morphotypes to achieve balanced correction


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_11 | Pages 7 - 7
4 Jun 2024
Sangoi D Ranjit S Bernasconi A Cullen N Patel S Welck M Malhotra K
Full Access

Background. The complex deformities in cavovarus feet may be difficult to assess and understand. Weight-bearing CT (WBCT) is increasingly used to evaluate complex deformities. However, the bone axes may be difficult to calculate in the setting of severe deformity. Computer-assisted 3D-axis calculation is a novel approach that may allow for more accurate assessment of foot alignment / deformity. The aim of this study was to assess differences in measurements done manually on 2D slices of WBCT versus 3D computer models in normal and cavus feet. Methods. We retrospectively analyzed WBCT scans from 16 normal and 16 cavus feet in patients with Charcot-Marie Tooth. Eight measurements were assessed: Talus-1. st. metatarsal angle (axial plane), Forefoot arch angle (coronal plane), and Meary's angle, calcaneal pitch, cuneiform to floor, cuneiform to skin, navicular to floor and navicular to skin distance (sagittal plane). 2D measurements were performed manually and 3D measurements were performed using specialised software (BoneLogic, DISIOR). Results. There was no significant difference in the measured variables (2D manual versus 3D automated) in normal feet. In the cavus group, 3D assessment calculated increased values for the sagittal angles: Meary's 7.3 degrees greater (p = 0.004), calcaneal pitch 2.4 degrees greater (p = 0.011)), and lower values for the axial talus-1. st. MT angle, 10.6 degrees less (p = 0.001). Conclusion. There were no significant differences in the normal group. This suggests 3D automated techniques can reliably assess the alignment of bony axes. However, the 3D axis calculations suggest there may be greater sagittal and lesser axial deformity in cavus feet than measured by 2D techniques. This discrepancy may be on account of the rotation seen in cavovarus feet, which may not be readily assessed manually. 3D automated measurements may therefore have a role in better assessing and classifying the cavus foot which may ultimately help inform treatment algorithms


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_9 | Pages 20 - 20
16 May 2024
Bernasconi A Cooper L Lyle S Patel S Cullen N Singh D Welck M
Full Access

Introduction. Pes cavovarus is a foot deformity that can be idiopathic (I-PC) or acquired secondary to other pathology. Charcot-Marie-Tooth disease (CMT) is the most common adult cause for acquired pes cavovarus deformity (CMT-PC). The foot morphology of these distinct patient groups has not been previously investigated. The aim of this study was to assess if morphological differences exist between CMT-PC, I-PC and normal feet (controls) using weightbearing computed tomography (WBCT). Methods. A retrospective analysis of WBCT scans performed between May 2013 and June 2017 was undertaken. WBCT scans from 17 CMT-PC, 17 I-PC and 17 healthy normally-aligned control feet (age-, side-, sex- and body mass index-matched) identified from a prospectively collected database, were analysed. Eight 2-dimensional (2D) and three 3-dimensional (3D) measurements were undertaken for each foot and mean values in the three groups were compared using one-way ANOVA with the Bonferroni correction. Results. Significant differences were observed between CMT-PC or I-PC and controls (p< 0.05). Two-dimensional measurements were similar in CMT-PC and I-PC, except for forefoot arch angle (p= 0.04). 3D measurements (foot and ankle offset, calcaneal offset and hindfoot alignment angle) demonstrated that CMT-PC exhibited more severe hindfoot varus malalignment than I-PC (p= 0.03, 0.04 and 0.02 respectively). Discussion. CMT-related cavovarus and idiopathic cavovarus feet are morphologically different from healthy feet, and CMT feet exhibit increased forefoot supination and hindfoot malalignment compared to idiopathic forms. The use of novel three-dimensional analysis may help highlight subtle structural differences in patients with similar foot morphology but aetiologically different pathology


Bone & Joint 360
Vol. 12, Issue 5 | Pages 24 - 26
1 Oct 2023

The October 2023 Foot & Ankle Roundup360 looks at: Risk factors for failure of total ankle arthroplasties; Effects of synovial fluid fracture haematoma to tissue-engineered cartilage; Coronal plane deformity in CMT-cavovarus feet using automated 3D measurements; Immediate weightbearing after ankle fracture fixation – is it safe?; Unlocking the mystery of Mueller-Weiss disease; Diabetic foot management: predictors of failure.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 179 - 179
1 Mar 2010
Wines A
Full Access

There are numerous causes of cavovarus feet, the most common of which are the hereditary motor and sensory peripheral neuropathies. Regardless of the underlying aetiology, cavovarus feet are caused by muscle imbalance. Often the imbalance is between a relatively strong tibialis posterior acting against a weaker peroneus brevis, and a relatively weak tibialis anterior being over powered by peroneus longus. Intrinsic muscle weakness and gastro-soleal tightness is common. After the failure of non-operative management, flexible deformity can be corrected with a combination of tendon transfers and osteotomies. Frequently surgical management of cavovarus feet involves a combination of calcaneal and first metatarsal osteotomies, peroneus longus to brevis transfer, transfer of tibialis posterior through the interosseous membrane to the dorsum of the foot, tendo-Achilles and plantar fascia lengthening and correction of toe deformities. The post-operative recovery is slow, but most patients achieve good functional results and report improvements in their activities of daily living


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1660 - 1665
1 Dec 2007
Krause F Windolf M Schwieger K Weber M

A cavovarus foot deformity was simulated in cadaver specimens by inserting metallic wedges of 15° and 30° dorsally into the first tarsometatarsal joint. Sensors in the ankle joint recorded static tibiotalar pressure distribution at physiological load.

The peak pressure increased significantly from neutral alignment to the 30° cavus deformity, and the centre of force migrated medially. The anterior migration of the centre of force was significant for both the 15° (repeated measures analysis of variance (ANOVA), p = 0.021) and the 30° (repeated measures ANOVA, p = 0.007) cavus deformity. Differences in ligament laxity did not influence the peak pressure.

These findings support the hypothesis that the cavovarus foot deformity causes an increase in anteromedial ankle joint pressure leading to anteromedial arthrosis in the long term, even in the absence of lateral hindfoot instability.