Advertisement for orthosearch.org.uk
Results 1 - 17 of 17
Results per page:
Bone & Joint Open
Vol. 4, Issue 3 | Pages 129 - 137
1 Mar 2023
Patel A Edwards TC Jones G Liddle AD Cobb J Garner A

Aims

The metabolic equivalent of task (MET) score examines patient performance in relation to energy expenditure before and after knee arthroplasty. This study assesses its use in a knee arthroplasty population in comparison with the widely used Oxford Knee Score (OKS) and EuroQol five-dimension index (EQ-5D), which are reported to be limited by ceiling effects.

Methods

A total of 116 patients with OKS, EQ-5D, and MET scores before, and at least six months following, unilateral primary knee arthroplasty were identified from a database. Procedures were performed by a single surgeon between 2014 and 2019 consecutively. Scores were analyzed for normality, skewness, kurtosis, and the presence of ceiling/floor effects. Concurrent validity between the MET score, OKS, and EQ-5D was assessed using Spearman’s rank.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 575 - 584
17 Aug 2022
Stoddart JC Garner A Tuncer M Cobb JP van Arkel RJ

Aims. The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA). Methods. Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95. th. percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone. Results. Peak tensile strains occurred on the anterior portion of the medial sagittal cut in all simulations. Lateral translation of the medial implant in Bi-UKA had the largest increase in ROF of any of the implant positions (43%). Overstuffing the joint by 2 mm had a much larger effect, resulting in a six-fold increase in ROF. Bi-UKA had ~10% increased ROF compared to UKA-M for both the male and female models, although the smaller, less dense female model had a 1.4 times greater ROF compared to the male model. Removal of anterior bone akin to BCR-TKA doubled ROF compared to Bi-UKA. Conclusion. Tibial eminence avulsion fracture has a similar risk associated with Bi-UKA to UKA-M. The risk is higher for smaller and less dense tibiae. To minimize risk, it is most important to avoid overstuffing the joint, followed by correctly positioning the medial implant, taking care not to narrow the bone island anteriorly. Cite this article: Bone Joint Res 2022;11(8):575–584


Aims. The aim of this study was to compare any differences in the primary outcome (biphasic flexion knee moment during gait) of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) at one year post-surgery. Methods. A total of 76 patients (34 bi-UKA and 42 TKA patients) were analyzed in a prospective, single-centre, randomized controlled trial. Flat ground shod gait analysis was performed preoperatively and one year postoperatively. Knee flexion moment was calculated from motion capture markers and force plates. The same setup determined proprioception outcomes during a joint position sense test and one-leg standing. Surgery allocation, surgeon, and secondary outcomes were analyzed for prediction of the primary outcome from a binary regression model. Results. Both interventions were shown to be effective treatment options, with no significant differences shown between interventions for the primary outcome of this study (18/35 (51.4%) biphasic TKA patients vs 20/31 (64.5%) biphasic bi-UKA patients; p = 0.558). All outcomes were compared to an age-matched, healthy cohort that outperformed both groups, indicating residual deficits exists following surgery. Logistic regression analysis of primary outcome with secondary outcomes indicated that the most significant predictor of postoperative biphasic knee moments was preoperative knee moment profile and trochlear degradation (Outerbridge) (R. 2. = 0.381; p = 0.002, p = 0.046). A separate regression of alignment against primary outcome indicated significant bi-UKA femoral and tibial axial alignment (R. 2. = 0.352; p = 0.029), and TKA femoral sagittal alignment (R. 2. = 0.252; p = 0.016). The bi-UKA group showed a significant increased ability in the proprioceptive joint position test, but no difference was found in more dynamic testing of proprioception. Conclusion. Robotic arm-assisted bi-UKA demonstrated equivalence to TKA in achieving a biphasic gait pattern after surgery for osteoarthritis of the knee. Both treatments are successful at improving gait, but both leave the patients with a functional limitation that is not present in healthy age-matched controls. Cite this article: Bone Joint J 2022;103-B(4):433–443


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 75 - 75
1 Dec 2021
Stoddart J Garner A Tuncer M Cobb J van Arkel R
Full Access

Abstract. Objectives. There is renewed interest in bi-unicondylar arthroplasty (Bi-UKA) for patients with medial and lateral tibiofemoral osteoarthritis, but a spared patellofemoral compartment and functional cruciate ligaments. The bone island between the two tibial components may be at risk of tibial eminence avulsion fracture, compromising function. This finite element analysis compared intraoperative tibial strains for Bi-UKA to isolated medial unicompartmental arthroplasty (UKA-M) to assess the risk of avulsion. Methods. A validated model of a large, high bone-quality tibia was prepared for both UKA-M and Bi-UKA. Load totalling 450N was distributed between the two ACL bundles, implant components and collateral ligaments based on experimental and intraoperative measurements with the knee extended and appropriately sized bearings used. 95th percentile maximum principal elastic strain was predicted in the proximal tibia. The effect of overcuts/positioning for the medial implant were studied; the magnitude of these variations was double the standard deviation associated with conventional technique. Results. For all simulations, strains were an order of magnitude lower than that associated with bone fracture. Highest strain occurred in the spine, under the anteromedial ACL attachment, adjacent to transverse overcut of the medial component. Consequently, Bi-UKA had little effect on strain: <10% increases were predicted when compared to UKA-M with equivalent medial cuts/positioning. However, surgical overcutting/positional variation that resulted in loss of anteromedial bone in the spine increased strain. The biggest increase was for lateral translation of the medial component: 44% and 42% for UKA-M and Bi-UKA, respectively. Conclusions. For a large tibia with high bone quality, Bi-UKA with a well-positioned lateral implant had no tangible effect on the risk of tibial eminence avulsion fracture compared to UKA-M. Malpositioning of the medial component that removes bone from the anterior spine could prove problematic for smaller tibiae. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Bone & Joint Research
Vol. 10, Issue 11 | Pages 723 - 733
1 Nov 2021
Garner AJ Dandridge OW Amis AA Cobb JP van Arkel RJ

Aims. Bi-unicondylar arthroplasty (Bi-UKA) is a bone and anterior cruciate ligament (ACL)-preserving alternative to total knee arthroplasty (TKA) when the patellofemoral joint is preserved. The aim of this study is to investigate the clinical outcomes and biomechanics of Bi-UKA. Methods. Bi-UKA subjects (n = 22) were measured on an instrumented treadmill, using standard gait metrics, at top walking speeds. Age-, sex-, and BMI-matched healthy (n = 24) and primary TKA (n = 22) subjects formed control groups. TKA subjects with preoperative patellofemoral or tricompartmental arthritis or ACL dysfunction were excluded. The Oxford Knee Score (OKS) and EuroQol five-dimension questionnaire (EQ-5D) were compared. Bi-UKA, then TKA, were performed on eight fresh frozen cadaveric knees, to investigate knee extensor efficiency under controlled laboratory conditions, using a repeated measures study design. Results. Bi-UKA walked 20% faster than TKA (Bi-UKA mean top walking speed 6.7 km/h (SD 0.9),TKA 5.6 km/h (SD 0.7), p < 0.001), exhibiting nearer-normal vertical ground reaction forces in maximum weight acceptance and mid-stance, with longer step and stride lengths compared to TKA (p < 0.048). Bi-UKA subjects reported higher OKS (p = 0.004) and EQ-5D (p < 0.001). In vitro, Bi-UKA generated the same extensor moment as native knees at low flexion angles, while reduced extensor moment was measured following TKA (p < 0.003). Conversely, at higher flexion angles, the extensor moment of TKA was normal. Over the full range, the extensor mechanism was more efficient following Bi-UKA than TKA (p < 0.028). Conclusion. Bi-UKA had more normal gait characteristics and improved patient-reported outcomes, compared to matched TKA subjects. This can, in part, be explained by differences in extensor efficiency. Cite this article: Bone Joint Res 2021;10(11):723–733


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1561 - 1570
1 Oct 2021
Blyth MJG Banger MS Doonan J Jones BG MacLean AD Rowe PJ

Aims. The aim of this study was to compare the clinical outcomes of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) during the first six weeks and at one year postoperatively. Methods. A per protocol analysis of 76 patients, 43 of whom underwent TKA and 34 of whom underwent bi-UKA, was performed from a prospective, single-centre, randomized controlled trial. Diaries kept by the patients recorded pain, function, and the use of analgesics daily throughout the first week and weekly between the second and sixth weeks. Patient-reported outcome measures (PROMs) were compared preoperatively, and at three months and one year postoperatively. Data were also compared longitudinally and a subgroup analysis was conducted, stratified by preoperative PROM status. Results. Both operations were shown to offer comparable outcomes, with no significant differences between the groups across all timepoints and outcome measures. Both groups also had similarly low rates of complications. Subgroup analysis for preoperative psychological state, activity levels, and BMI showed no difference in outcomes between the two groups. Conclusion. Robotic arm-assisted, cruciate-sparing bi-UKA offered similar early clinical outcomes and rates of complications to a mechanically aligned TKA, both in the immediate postoperative period and up to one year following surgery. Further work is required to identify which patients with osteoarthritis of the knee will derive benefit from a cruciate-sparing bi-UKA. Cite this article: Bone Joint J 2021;103-B(10):1561–1570


Bone & Joint Open
Vol. 2, Issue 8 | Pages 638 - 645
1 Aug 2021
Garner AJ Edwards TC Liddle AD Jones GG Cobb JP

Aims

Joint registries classify all further arthroplasty procedures to a knee with an existing partial arthroplasty as revision surgery, regardless of the actual procedure performed. Relatively minor procedures, including bearing exchanges, are classified in the same way as major operations requiring augments and stems. A new classification system is proposed to acknowledge and describe the detail of these procedures, which has implications for risk, recovery, and health economics.

Methods

Classification categories were proposed by a surgical consensus group, then ranked by patients, according to perceived invasiveness and implications for recovery. In round one, 26 revision cases were classified by the consensus group. Results were tested for inter-rater reliability. In round two, four additional cases were added for clarity. Round three repeated the survey one month later, subject to inter- and intrarater reliability testing. In round four, five additional expert partial knee arthroplasty surgeons were asked to classify the 30 cases according to the proposed revision partial knee classification (RPKC) system.


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 610 - 618
1 Apr 2021
Batailler C Bordes M Lording T Nigues A Servien E Calliess T Lustig S

Aims

Ideal component sizing may be difficult to achieve in unicompartmental knee arthroplasty (UKA). Anatomical variants, incremental implant size, and a reduced surgical exposure may lead to over- or under-sizing of the components. The purpose of this study was to compare the accuracy of UKA sizing with robotic-assisted techniques versus a conventional surgical technique.

Methods

Three groups of 93 medial UKAs were assessed. The first group was performed by a conventional technique, the second group with an image-free robotic-assisted system (Image-Free group), and the last group with an image-based robotic arm-assisted system, using a preoperative CT scan (Image-Based group). There were no demographic differences between groups. We compared six parameters on postoperative radiographs to assess UKA sizing. Incorrect sizing was defined by an over- or under-sizing greater than 3 mm.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 53 - 53
1 Feb 2021
Garner A Dandridge O Amis A Cobb J van Arkel R
Full Access

Combined Partial Knee Arthroplasty (CPKA) is a promising alternative to Total Knee Arthroplasty (TKA) for the treatment of multi-compartment arthrosis. Through the simultaneous or staged implantation of multiple Partial Knee Arthroplasties (PKAs), CPKA aims to restore near-normal function of the knee, through retention of the anterior cruciate ligament and native disease-free compartment. Whilst PKA is well established, CPKA is comparatively novel and associated biomechanics are less well understood. Clinically, PKA and CPKA have been shown to better restore knee function compared to TKA, particularly during fast walking. The biomechanical explanation for this superiority remains unclear but may be due to better preservation of the extensor mechanism. This study sought to assess and compare extensor function after PKA, CPKA, and TKA. An instrumented knee extension rig facilitated the measurement extension moment of twenty-four cadaveric knees, which were measured in the native state and then following a sequence of arthroplasty procedures. Eight knees underwent medial Unicompartmental Knee Arthroplasty (UKA-M), followed by patellofemoral arthroplasty (PFA) thereby converting to medial Bicompartmental Knee Arthroplasty (BCA-M). In the final round of testing the PKA implants were removed a posterior-cruciate retaining TKA was implanted. The second eight received lateral equivalents (UKA-L then BCA-L) then TKA. The final eight underwent simultaneous Bi-Unicondylar Arthroplasty (Bi-UKA) before TKA. Extensor efficiencies over extension ranges typical of daily tasks were also calculated and differences between arthroplasties were assessed using repeated measures analysis of variance. For both the medial and lateral groups, UKA demonstrated the same extensor function as the native knee. BCA resulted in a small reduction in extensor moment between 70–90° flexion but, in the context of daily activity, extensor efficiency was largely unaffected and no significant reductions were found. TKA, however, resulted in significantly reduced extensor moments, leading to efficiency deficits ranging from 8% to 43% in flexion ranges associated with downhill walking and the stance phase of gait, respectively. Comparing the arthroplasties: TKA was significantly less efficient than both UKA-M and BCA-M over ranges representing stair ascent and gait; TKA showed a significant 23% reduction compared to BCA-L in the same range. There were no differences in efficiency between the UKAs and BCAs over any flexion range and TKA efficiency was consistently lower than all other arthroplasties. Bi-UKA generated the same extensor moment as native knee at flexion angles typical of fast gait (0–30°). Again, TKA displayed significantly reduced extensor moments towards full extension but returned to the normal range in deep flexion. Overall, TKA was significantly less efficient following TKA than Bi-UKA. Recipients of PKA and CPKA have superior functional outcomes compared to TKA, particularly in relation to fast walking. This in vitro study found that both UKA and CPKA better preserve extensor function compared to TKA, especially when evaluated in the context of daily functional tasks. TKA reduced knee extensor efficiency by over 40% at flexion angles associated with gait, arguably the most important activity to maintain patient satisfaction. These findings go some way to explaining functional deficiencies of TKA compared to CPKA observed clinically


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims. The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. Methods. An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups. Results. The pre- to postoperative changes in joint anatomy were significantly less in patients undergoing bi-UKA in all three planes in both the femur and tibia, except for femoral sagittal component orientation in which there was no difference. Overall, for the six parameters of alignment (three femoral and three tibial), 47% of bi-UKAs and 24% TKAs had a change of < 2° (p = 0.045). The change in HKAA towards neutral in varus and valgus knees was significantly less in patients undergoing bi-UKA compared with those undergoing TKA (p < 0.001). Alignment was neutral in those undergoing TKA (mean 179.5° (SD 3.2°)) while those undergoing bi-UKA had mild residual varus or valgus alignment (mean 177.8° (SD 3.4°)) (p < 0.001). Conclusion. Robotic-assisted, cruciate-sparing bi-UKA maintains the natural anatomy of the knee in the coronal, sagittal, and axial planes better, and may therefore preserve normal joint kinematics, compared with a mechanically aligned TKA. This includes preservation of coronal joint line obliquity. HKAA alignment was corrected towards neutral significantly less in patients undergoing bi-UKA, which may represent restoration of the pre-disease constitutional alignment (p < 0.001). Cite this article: Bone Joint J 2020;102-B(11):1511–1518


The Bone & Joint Journal
Vol. 102-B, Issue 6 | Pages 716 - 726
1 Jun 2020
Scott CEH Holland G Krahelski O Murray IR Keating JF Keenan OJF

Aims

This study aims to determine the proportion of patients with end-stage knee osteoarthritis (OA) possibly suitable for partial (PKA) or combined partial knee arthroplasty (CPKA) according to patterns of full-thickness cartilage loss and anterior cruciate ligament (ACL) status.

Methods

A cross-sectional analysis of 300 consecutive patients (mean age 69 years (SD 9.5, 44 to 91), mean body mass index (BMI) 30.6 (SD 5.5, 20 to 53), 178 female (59.3%)) undergoing total knee arthroplasty (TKA) for Kellgren-Lawrence grade ≥ 3 knee OA was conducted. The point of maximal tibial bone loss on preoperative lateral radiographs was determined as a percentage of the tibial diameter. At surgery, Lachman’s test and ACL status were recorded. The presence of full-thickness cartilage loss within 16 articular surface regions (two patella, eight femoral, six tibial) was recorded.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_3 | Pages 11 - 11
1 Feb 2020
Johnston WD Razii N Banger MS Rowe PJ Jones BG MacLean AD Blyth MJG
Full Access

The objective of this study was to compare differences in alignment following robotic arm-assisted bi-unicompartmental knee arthroplasty (Bi-UKA) and conventional total knee arthroplasty (TKA). This was a prospective, randomised controlled trial of 70 patients. 39 TKAs were implanted manually, as per standard protocol at our institution, and 31 Bi-UKA patients simultaneously received fixed-bearing medial and lateral UKAs, implanted using robotic arm-assistance. Preoperative and 3-month postoperative CT scans were analysed to determine hip knee ankle angle (HKAA), medial distal femoral angle (MDFA), and medial proximal tibial angle (MPTA). Analysis was repeated for 10 patients by a second rater to validate measurement reliability by calculating the intra-class correlation coefficient (ICC). Mean change in HKAA towards neutral was 2.7° in TKA patients and 2.3° in Bi-UKA patients (P=0.6). Mean change in MDFA was 2.5° for TKA and 1.0° for Bi-UKA (P<0.01). Mean change in MPTA was 3.7° for TKA and 0.8° for Bi-UKA (P<0.01). Mean postoperative MDFA and MPTA for TKAs were 89.8° and 89.6° respectively, indicating orientation of femoral and tibial components perpendicular to the mechanical axis. Mean postoperative MDFA and MPTA for Bi-UKAs were 91.0° and 86.9° respectively, indicating a more oblique joint line orientation. Inter-rater agreement was excellent (ICC>0.99). Early functional activities, according to the new Knee Society Scoring System, favoured Bi-UKAs (P<0.05). Robotic arm-assisted, cruciate-sparing Bi-UKA better maintains the natural anatomy of the knee in the coronal plane and may therefore preserve normal joint kinematics, compared to a mechanically aligned TKA. This has been achieved without significantly altering overall HKAA


Bone & Joint Research
Vol. 8, Issue 12 | Pages 593 - 600
1 Dec 2019
Koh Y Lee J Lee H Kim H Chung H Kang K

Aims

Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component.

Methods

Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated.


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 922 - 928
1 Aug 2019
Garner A van Arkel RJ Cobb J

Aims

There has been a recent resurgence in interest in combined partial knee arthroplasty (PKA) as an alternative to total knee arthroplasty (TKA). The varied terminology used to describe these procedures leads to confusion and ambiguity in communication between surgeons, allied health professionals, and patients. A standardized classification system is required for patient safety, accurate clinical record-keeping, clear communication, correct coding for appropriate remuneration, and joint registry data collection.

Materials and Methods

An advanced PubMed search was conducted, using medical subject headings (MeSH) to identify terms and abbreviations used to describe knee arthroplasty procedures. The search related to TKA, unicompartmental (UKA), patellofemoral (PFA), and combined PKA procedures. Surveys were conducted of orthopaedic surgeons, trainees, and biomechanical engineers, who were asked which of the descriptive terms and abbreviations identified from the literature search they found most intuitive and appropriate to describe each procedure. The results were used to determine a popular consensus.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 23 - 23
1 Jan 2016
Mashiba T Mori M Yamamoto T
Full Access

Purpose. There is a large gap between UKA and TKA in terms of tissue preservation including bone stock and knee ligament. We have recently introduced bicompartmental UKA (Bi-UKA) to fill the gap and achieve more “physiological” knee than TKA. In this study, we report the short-term results of Bi-UKA. Subjects and Methods. Thirty knees in twenty-nine osteoarthritis patients who underwent Bi-UKA from December 2010 to December 2013 (6 males and 23 females, average age of 75) were clinically and radiologically evaluated with an average observation period of 19 months. The operative indications were (1)confirmed diagnosis of medial and lateral osteoarthritis or osteonecrosis with preserved status of patellofemoral joint; (2)range of knee flexion greater than 110°; (3)flexion contracture less than 20°; (4)clinically stable knee in the frontal and sagittal plane; (5)correctable knee deformity with fine knee congruency. In all cases, fixed type UKA was implanted through a tibia dependent cut using a spacer block. Zimmer Uni and TRIBRID UKA (Kyocera Medical Corporation) were implanted in 18 and 12 cases, respectively. Results. The mean JOA score improved significantly from 57 points preoperatively to 89 points postoperatively. With regard to ROM, the mean extension significantly improved from −6° to −1° (p<0.001), and the mean flexion was almost unchanged from 134° to 139°. Six knees achieved maximum flexion angles of more than 150°. The mean leg alignment was unchanged from 174.5° to 175.2°, although there were five knees in which alignment was corrected by more than 10° after the surgery. All implant alingnments were reasonably acceptable and particularly, the gaps of setting angle between medial and lateral components were quite small in lateral view radiograph. A only major postoperative complication we have experienced was a periprosthetic tibia fracture, which had been successfully treated with screw fixation. Discussion. Bi-UKA is a bone- and ligament-sparing procedure that may provide better knee function and patient satisfaction than does TKA. Complicated surgical procedure, relationship of placement position between medial and lateral prostheses, ligament balancing, and longer-term results remain subjects to be resolved. However, tibia dependent cut technique using spacer block was quite useful to improve the accuracy of implants positioning during Bi-UKA procedure. Our short-term results of Bi-UKA were well acceptable although there were a few complaints or complications. We would like to confirm the usefulness of this procedure and further establish the best indication by increasing the number of patients in the future


The Bone & Joint Journal
Vol. 97-B, Issue 10_Supple_A | Pages 9 - 15
1 Oct 2015
Parratte S Ollivier M Lunebourg A Abdel MP Argenson J

Partial knee arthroplasty (PKA), either medial or lateral unicompartmental knee artroplasty (UKA) or patellofemoral arthroplasty (PFA) are a good option in suitable patients and have the advantages of reduced operative trauma, preservation of both cruciate ligaments and bone stock, and restoration of normal kinematics within the knee joint. However, questions remain concerning long-term survival. The goal of this review article was to present the long-term results of medial and lateral UKA, PFA and combined compartmental arthroplasty for multicompartmental disease. Medium- and long-term studies suggest reasonable outcomes at ten years with survival greater than 95% in UKA performed for medial osteoarthritis or osteonecrosis, and similarly for lateral UKA, particularly when fixed-bearing implants are used. Disappointing long-term outcomes have been observed with the first generation of patellofemoral implants, as well as early Bi-Uni (ie, combined medial and lateral UKA) or Bicompartmental (combined UKA and PFA) implants due to design and fixation issues. Promising short- and med-term results with the newer generations of PFAs and bicompartmental arthroplasties will require long-term confirmation.

Cite this article: Bone Joint J 2015;97-B(10 Suppl A):9–15.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 466 - 466
1 Nov 2011
Aubaniac J Parratte S Argenson JA
Full Access

Treatment of limited osteoarthritis of the knee remains a challenging problem. Total knee arthroplasty may provide a reliable long-lasting option but do not preserve the bone stock. In another hand, compartmental arthroplasty with or without osteotomy is a bone and ligament sparing solution to manage limited osteoarthritis of the knee. Considering the renewed interest for combined compartmental implants we aimed to evaluate the average 12-year clinical and radiological outcome of a consecutive series of patients treated with compartmental knee arthroplasty combined or not with osteotomy. We retrospectively reviewed all 255 patients (274 knees) treated in our institution with a compartmental arthroplasty combined or not with an osteotomy for a diagnosis of either bi or tricompartmental osteoarthritis of the knee between April 1972 and December 2000. The series included: 100 cases of combined lateral and medial UKA, 77 combined medial UKA and patello-femoral arthroplasty (PFA), 19 cases of combined Bi-UKA and PFA, 14 cases of UKA and high tibial osteotomy (HTO), 7 cases of combined lateral-UKA and PFA and HTO, 16 cases of combined lateral-UKA and PFA and 13 cases of combined bi-UKA and HTO. Patient’s selection and surgical indication was based on the physical exam and on the radiological analysis including full-length x-rays and stress x-rays. Clinical and radiological evaluations were performed at a minimum follow-up of 5 years (mean, 12 years; range, 5–23 years) by an independent observer. The Knee Society knee and function scores improved respectively from 43 to 89 and from 47 to 90 at last-follow-up. The mean active knee flexion improved from 116° ± 6° (range, 100°–145°) pre-operatively to 129° ± 5° (range, 117°–149°) at final follow-up. The restoration of the mechanical axis of the knee was achieved in all the cases. Dramatic failures were observed for patient with uncemented PFA. Considering revision for any reason as the endpoint, the 17-years survivorship was 0.68 (95% confidence interval: 0.62 to 0.75). Our results suggested that combined compartmental arthroplasty with or without osteotomy can restore function and alignment of the knee in compartmental arthritis. This combined surgery represents a bone and ligament sparing alternative to TKA which can be considerate as a true minimally invasive solution