The aim of this study was to determine the clinical outcomes and factors contributing to failure of transposition osteotomy of the acetabulum (TOA), a type of spherical periacetabular osteotomy, for advanced osteoarthritis secondary to hip dysplasia. We reviewed patients with Tönnis grade 2 osteoarthritis secondary to hip dysplasia who underwent TOA between November 1998 and December 2019. Patient demographic details, osteotomy-related complications, and the modified Harris Hip Score (mHHS) were obtained via medical notes review. Radiological indicators of hip dysplasia were assessed using preoperative and postoperative radiographs. The cumulative probability of TOA failure (progression to Tönnis grade 3 or conversion to total hip arthroplasty) was estimated using the Kaplan-Meier product-limited method. A multivariate Cox proportional hazards model was used to identify predictors of failure.Aims
Methods
The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity. Cite this article:
To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.Aims
Methods
To clarify the mid-term results of transposition osteotomy of the acetabulum (TOA), a type of spherical periacetabular osteotomy, combined with structural allograft bone grafting for severe hip dysplasia. We reviewed patients with severe hip dysplasia, defined as Severin IVb or V (lateral centre-edge angle (LCEA) < 0°), who underwent TOA with a structural bone allograft between 1998 and 2019. A medical chart review was conducted to extract demographic data, complications related to the osteotomy, and modified Harris Hip Score (mHHS). Radiological parameters of hip dysplasia were measured on pre- and postoperative radiographs. The cumulative probability of TOA failure (progression to Tönnis grade 3 or conversion to total hip arthroplasty) was estimated using the Kaplan–Meier product-limited method, and a multivariate Cox proportional hazard model was used to identify predictors for failure.Aims
Methods
Traditional radiographic criteria might underestimate or fail to detect subtle types of acetabular dysplasia. Acetabular sector angles (ASA) can measure the degree of anterior and posterior coverage of the femoral head on computed tomography (CT). This study aims to determine ASA values at different axial levels in a cohort of (1) asymptomatic, high-functioning hips without underlying hip pathology (controls); and (2) symptomatic, dysplastic hips that underwent periacetabular osteotomy (PAO). Thereby, we aimed to define CT-based thresholds for hip dysplasia and its subtypes. This is an IRB approved cross-sectional study of 51 high functioning, asymptomatic patients (102 hips) (Oxford Hip Score >43), without signs of osteoarthritis (Tönnis grade≤1), who underwent a CT scan of the pelvis (mean age: 52.1±5.5 years; 52.9% females); and 66 patients (72 hips) with symptomatic hip dysplasia treated with peri-acetabular osteotomy (PAO) (mean age: 29.3±7.3 years; 85.9% females). Anterior and posterior acetabular sector angles (AASA & PASA) were measured by two observers at three CT axial levels to determine equatorial, intermediate, and proximal ASA. Inter- and intra-observer reliability coefficient was high (between 0.882–0.992). Cut-off values for
A national screening programme has existed in the UK for the diagnosis of developmental dysplasia of the hip (DDH) since 1969. However, every aspect of screening and treatment remains controversial. Screening programmes throughout the world vary enormously, and in the UK there is significant variation in screening practice and treatment pathways. We report the results of an attempt by the British Society for Children’s Orthopaedic Surgery (BSCOS) to identify a nationwide consensus for the management of DDH in order to unify treatment and suggest an approach for screening. A Delphi consensus study was performed among the membership of BSCOS. Statements were generated by a steering group regarding aspects of the management of DDH in children aged under three months, namely screening and surveillance (15 questions), the technique of ultrasound scanning (eight questions), the initiation of treatment (19 questions), care during treatment with a splint (ten questions), and on quality, governance, and research (eight questions). A two-round Delphi process was used and a consensus document was produced at the final meeting of the steering group.Aims
Methods
Aim. Aim of this monocentric, prospective study was to evaluate the safety, efficacy, clinical and radiographical results at 24-month follow-up (N = 6 patients) undergoing hip revision surgery with severe acetabular bone defects (Paprosky 2C-3A-3B) using a combination of a novel phase-pure betatricalciumphosphate - collagen 3D matrix with allograft bone chips. Method. Prospective follow-up of 6 consecutive patients, who underwent revision surgery of the acetabular component in presence of massive bone defects between April 2018 and July 2019. Indications for revision included mechanical loosening in 4 cases and history of hip infection in 2 cases.
After failed acetabular fractures, total hip arthroplasty (THA) is a challenging procedure and considered the gold standard treatment. The complexity of the procedure depends on the fracture pattern and the initial fracture management. This study’s primary aim was to evaluate patient-reported outcome measures (PROMs) for patients who underwent delayed uncemented acetabular THA after acetabular fractures. The secondary aims were to assess the radiological outcome and the incidence of the associated complications in those patients. A total of 40 patients underwent cementless acetabular THA following failed treatment of acetabular fractures. The postoperative clinical and radiological outcomes were evaluated for all the cohort.Aims
Methods
Introduction and Objective. The surgical strategy for acetabular component revision is determined by available host bone stock.
Various surgical techniques have been described for total hip arthroplasty (THA) in patients with Crowe type III dislocated hips, who have a large acetabular bone defect. The aim of this study was to evaluate the long-term clinical results of patients in whom anatomical reconstruction of the acetabulum was performed using a cemented acetabular component and autologous bone graft from the femoral neck. A total of 22 patients with Crowe type III dislocated hips underwent 28 THAs using bone graft from the femoral neck between 1979 and 2000. A Charnley cemented acetabular component was placed at the level of the true acetabulum after preparation with bone grafting. All patients were female with a mean age at the time of surgery of 54 years (35 to 68). A total of 18 patients (21 THAs) were followed for a mean of 27.2 years (20 to 33) after the operation.Aims
Methods
Complex total hip arthroplasty (THA) with subtrochanteric shortening osteotomy is necessary in conditions other than developmental dysplasia of the hip (DDH) and septic arthritis sequelae with significant proximal femur migration. Our aim was to evaluate the hip centre restoration with THAs in these hips. In all, 27 THAs in 25 patients requiring THA with femoral shortening between 2012 and 2019 were assessed. Bilateral shortening was required in two patients. Subtrochanteric shortening was required in 14 out of 27 hips (51.9%) with aetiology other than DDH or septic arthritis. Vertical centre of rotation (VCOR), horizontal centre of rotation, offset, and functional outcome was calculated. The mean followup was 24.4 months (5 to 92 months).Aims
Methods
The aim of the current study was to assess the reliability of the Ottawa classification for symptomatic acetabular dysplasia. In all, 134 consecutive hips that underwent periacetabular osteotomy were categorized using a validated software (Hip2Norm) into four categories of normal, lateral/global, anterior, or posterior. A total of 74 cases were selected for reliability analysis, and these included 44 dysplastic and 30 normal hips. A group of six blinded fellowship-trained raters, provided with the classification system, looked at these radiographs at two separate timepoints to classify the hips using standard radiological measurements. Thereafter, a consensus meeting was held where a modified flow diagram was devised, before a third reading by four raters using a separate set of 74 radiographs took place.Aims
Methods
Severe acetabular bone loss and pelvic discontinuity (PD) present particular challenges in revision total hip arthroplasty. To deal with such complex situations, cup-cage reconstruction has emerged as an option for treating this situation. We aimed to examine our success in using this technique for these anatomical problems. We undertook a retrospective, single-centre series of 35 hips in 34 patients (seven male, 27 female) treated with a cup-cage construct using a trabecular metal shell in conjunction with a titanium cage, for severe acetabular bone loss between 2011 and 2015. The mean age at the time of surgery was 70 years (42 to 85) and all patients had an acetabular defect graded as Paprosky Type 2C through to 3B, with 24 hips (69%) having PD. The mean follow-up was 47 months (25 to 84).Aims
Patients and Methods
Down syndrome (DS), is a genetic disorder caused by a third copy of the 21st chromosome (Trisomy 21), featuring typical facial characteristics, growth delays and varying degrees of intellectual disability. Some degree of immune deficiency is variably present. Multiple orthopaedic conditions are associated, including stunted growth (90%), ligamentous laxity (90%), low muscle tone (80%), hand and foot deformities (60%), hip instability (30%), and spinal abnormalities including atlanto-axial instability (20%) and scoliosis. Hip disease severity varies and follows a variable time course. Rarely a child presents with DDH, but during the first 2 years the hips are characteristically stable but hypermobile with well-formed acetabulae. Spontaneous subluxation or dislocation after 2 presents with painless clicking, limping or giving way. Acute dislocation is associated with moderate pain, increased limp and reduced activity following minor trauma. Hips are reducible under anesthesia, but recurrence is common. Eventually concentric reduction becomes rarer and radiographic dysplasia develops. Pathology includes: a thin, weak fibrous capsule, moderate to severe femoral neck anteversion and a posterior superior
Few reconstructive techniques are available for patients requiring
complex acetabular revisions such as those involving Paprosky type
2C, 3A and 3B deficiencies and pelvic discontinuity. Our aim was
to describe the development of the patient specific Triflange acetabular
component for use in these patients, the surgical technique and
mid-term results. We include a description of the pre-operative
CT scanning, the construction of a model, operative planning, and
surgical technique. All implants were coated with porous plasma
spray and hydroxyapatite if desired. A multicentre, retrospective review of 95 complex acetabular
reconstructions in 94 patients was performed. A total of 61 (64.2%)
were female. The mean age of the patients was 66 (38 to 85). The
mean body mass index was 29 kg/m2 (18 to 51). Outcome
was reported using the Harris Hip Score (HHS), complications, failures
and survival.Aims
Patients and Methods
Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring. Three separate patterns of augment placement have been utilised in our practice since the development of these implants a decade ago: Type 1 - augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely, but the need for structural bone is avoided. From 2000 through 2007, porous tantalum acetabular augments were used very selectively in 85 revision THA procedures out of total of the 1,789 revision hip cases performed at our institution. All cases had associated massive