Advertisement for orthosearch.org.uk
Results 1 - 20 of 111
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 783 - 791
1 Aug 2024
Tanaka S Fujii M Kawano S Ueno M Nagamine S Mawatari M

Aims

The aim of this study was to determine the clinical outcomes and factors contributing to failure of transposition osteotomy of the acetabulum (TOA), a type of spherical periacetabular osteotomy, for advanced osteoarthritis secondary to hip dysplasia.

Methods

We reviewed patients with Tönnis grade 2 osteoarthritis secondary to hip dysplasia who underwent TOA between November 1998 and December 2019. Patient demographic details, osteotomy-related complications, and the modified Harris Hip Score (mHHS) were obtained via medical notes review. Radiological indicators of hip dysplasia were assessed using preoperative and postoperative radiographs. The cumulative probability of TOA failure (progression to Tönnis grade 3 or conversion to total hip arthroplasty) was estimated using the Kaplan-Meier product-limited method. A multivariate Cox proportional hazards model was used to identify predictors of failure.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 312 - 318
1 Apr 2024
Sheth NP Jones SA Sanghavi SA Manktelow A

The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity.

Cite this article: Bone Joint J 2024;106-B(4):312–318.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims

To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time.

Methods

We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 743 - 750
1 Jul 2023
Fujii M Kawano S Ueno M Sonohata M Kitajima M Tanaka S Mawatari D Mawatari M

Aims

To clarify the mid-term results of transposition osteotomy of the acetabulum (TOA), a type of spherical periacetabular osteotomy, combined with structural allograft bone grafting for severe hip dysplasia.

Methods

We reviewed patients with severe hip dysplasia, defined as Severin IVb or V (lateral centre-edge angle (LCEA) < 0°), who underwent TOA with a structural bone allograft between 1998 and 2019. A medical chart review was conducted to extract demographic data, complications related to the osteotomy, and modified Harris Hip Score (mHHS). Radiological parameters of hip dysplasia were measured on pre- and postoperative radiographs. The cumulative probability of TOA failure (progression to Tönnis grade 3 or conversion to total hip arthroplasty) was estimated using the Kaplan–Meier product-limited method, and a multivariate Cox proportional hazard model was used to identify predictors for failure.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 3 - 3
7 Jun 2023
Verhaegen J Devries Z Horton I Slullitel P Rakhra K Beaule P Grammatopoulos G
Full Access

Traditional radiographic criteria might underestimate or fail to detect subtle types of acetabular dysplasia. Acetabular sector angles (ASA) can measure the degree of anterior and posterior coverage of the femoral head on computed tomography (CT). This study aims to determine ASA values at different axial levels in a cohort of (1) asymptomatic, high-functioning hips without underlying hip pathology (controls); and (2) symptomatic, dysplastic hips that underwent periacetabular osteotomy (PAO). Thereby, we aimed to define CT-based thresholds for hip dysplasia and its subtypes. This is an IRB approved cross-sectional study of 51 high functioning, asymptomatic patients (102 hips) (Oxford Hip Score >43), without signs of osteoarthritis (Tönnis grade≤1), who underwent a CT scan of the pelvis (mean age: 52.1±5.5 years; 52.9% females); and 66 patients (72 hips) with symptomatic hip dysplasia treated with peri-acetabular osteotomy (PAO) (mean age: 29.3±7.3 years; 85.9% females). Anterior and posterior acetabular sector angles (AASA & PASA) were measured by two observers at three CT axial levels to determine equatorial, intermediate, and proximal ASA. Inter- and intra-observer reliability coefficient was high (between 0.882–0.992). Cut-off values for acetabular deficiency were determined based on Receiver Operating Characteristic (ROC) curve analysis, area under the curve (AUC) was calculated. The dysplastic group had significantly smaller ASAs compared to the Control Group, AUC was the highest at the proximal and intermediate PASA. Controls had a mean proximal PASA of 162°±17°, with a cut-off value for dysplasia of 137° (AUC: 0.908). At the intermediate level, the mean PASA of controls was 117°±11°, with a cut-off value of 107° (AUC 0.904). Cut-off for anterior dysplasia was 133° for proximal AASA (AUC 0.859) and 57° for equatorial AASA (AUC 0.868). Cut-off for posterior dysplasia was 102° for intermediate PASA (AUC 0.933). Measurement of ASA on CT is a reliable tool to identify dysplastic hips with high diagnostic accuracy. Posterior ASA less than 137° at the proximal level, and 107° at the intermediate level should alert clinicians of the presence of dysplasia


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 209 - 214
1 Feb 2023
Aarvold A Perry DC Mavrotas J Theologis T Katchburian M

Aims

A national screening programme has existed in the UK for the diagnosis of developmental dysplasia of the hip (DDH) since 1969. However, every aspect of screening and treatment remains controversial. Screening programmes throughout the world vary enormously, and in the UK there is significant variation in screening practice and treatment pathways. We report the results of an attempt by the British Society for Children’s Orthopaedic Surgery (BSCOS) to identify a nationwide consensus for the management of DDH in order to unify treatment and suggest an approach for screening.

Methods

A Delphi consensus study was performed among the membership of BSCOS. Statements were generated by a steering group regarding aspects of the management of DDH in children aged under three months, namely screening and surveillance (15 questions), the technique of ultrasound scanning (eight questions), the initiation of treatment (19 questions), care during treatment with a splint (ten questions), and on quality, governance, and research (eight questions). A two-round Delphi process was used and a consensus document was produced at the final meeting of the steering group.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 25 - 25
1 Oct 2022
Casali M Rani N Cucurnia I Filanti M Coco V Reale D Zarantonello P Musiani C Zaffagnini M Romagnoli M
Full Access

Aim. Aim of this monocentric, prospective study was to evaluate the safety, efficacy, clinical and radiographical results at 24-month follow-up (N = 6 patients) undergoing hip revision surgery with severe acetabular bone defects (Paprosky 2C-3A-3B) using a combination of a novel phase-pure betatricalciumphosphate - collagen 3D matrix with allograft bone chips. Method. Prospective follow-up of 6 consecutive patients, who underwent revision surgery of the acetabular component in presence of massive bone defects between April 2018 and July 2019. Indications for revision included mechanical loosening in 4 cases and history of hip infection in 2 cases. Acetabular deficiencies were evaluated radiographically and CT and classified according to the Paprosky classification. Initial diagnosis of the patients included osteoarthritis (N = 4), a traumatic fracture and a congenital hip dislocation. 5 patients underwent first revision surgery, 1 patient underwent a second revision surgery. Results. All patients were followed-up radiographically with a mean of 25,8 months. No complications were observed direct postoperatively. HHS improved significantly from 23.9 preoperatively to 81.5 at the last follow-up. 5 patients achieved a defined good result, and one patient achieved a fair result. No periprosthetic joint infection, no dislocations, no deep vein thrombosis, no vessel damage, and no complaint about limbs length discrepancy could be observed. Postoperative dysmetria was found to be + 0.2cm (0cm/+1.0cm) compared to the preoperative dysmetria of − 2.4 cm (+0.3cm/−5.7cm). Conclusions. Although used in severe acetabular bone defects, the novel phase-pure betatricalciumphosphate - collagen 3D matrixshowed complete resorption and replacement by newly formed bone, leading to a full implant integration at 24 months follow-up and thus represents a promising method with excellent bone regeneration capacities for complex cases, where synthetic bone grafting material is used in addition to autografts


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1067 - 1074
1 Dec 2021
El-Bakoury A Khedr W Williams M Eid Y Hammad AS

Aims

After failed acetabular fractures, total hip arthroplasty (THA) is a challenging procedure and considered the gold standard treatment. The complexity of the procedure depends on the fracture pattern and the initial fracture management. This study’s primary aim was to evaluate patient-reported outcome measures (PROMs) for patients who underwent delayed uncemented acetabular THA after acetabular fractures. The secondary aims were to assess the radiological outcome and the incidence of the associated complications in those patients.

Methods

A total of 40 patients underwent cementless acetabular THA following failed treatment of acetabular fractures. The postoperative clinical and radiological outcomes were evaluated for all the cohort.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 76 - 76
1 Nov 2021
Turchetto L Saggin S
Full Access

Introduction and Objective. The surgical strategy for acetabular component revision is determined by available host bone stock. Acetabular bone deficiencies vary from cavitary or segmental defects to complete discontinuity. For segmental acetabular defects with more than 50% of the graft supporting the cup it is recommended the application of reinforcement ring or ilioischial antiprotrusio devices. Acetabular reconstruction with the use of the antiprotrusion cage (APC) and allografts represents a reliable procedure to manage severe periprosthetic deficiencies with highly successful long-term outcomes in revision arthroplasty. Objective. We present our experience, results, critical issues and technical innovations aimed at improving survival rates of antiprotrusio cages. Materials and Methods. From 2004 to 2019 we performed 69 revisions of the acetabulum using defrosted morcellized bone graft and the Burch Schneider anti-protrusion cage. The approach was direct lateral in 25 cases, direct anterior in 44. Patients were re-evaluated with standard radiography and clinical examination. Results. Eight patients died from causes not related to surgery, and two patients were not available for follow up. Five patients were reviewed for, respectively, non-osseointegration of the ring, post-traumatic loosening with rupture of the screws preceded by the appearance of supero-medial radiolucency, post-traumatic rupture of the distal flange, post-traumatic rupture of the cemented polyethylene-ceramic insert, and dislocation treated with new dual-mobility insert. Among these cases, the first three did not show macroscopic signs of osseointegration of the ring, and the only areas of stability were represented by the bone-cement contact at the holes in the ring. Although radiographic studies have shown fast remodeling of the bone graft and the implant survival range from 70% to 100% in the 10-year follow up, the actual osseointegration of the ring has yet to be clarified. To improve osseointegration of the currently available APC whose metal surface in contact with the bone is sandblasted, we combined the main features of the APC design long validated by surgical experience with the 3D-Metal Technology for high porosity of the external surface already applied to and validated with the press fit cups. The new APC design is produced with the 3D-Metal technology using Titanium alloy (Ti6Al4V ELI) that Improves fatigue resistance, primary stability and favorable environment for bone graft ingrowth. We preview the results of the first cases with short-term follow up. Conclusions. Acetabular reconstruction with impacted morcellized bone graft and APC is a current and reliable surgical technique that allows the restoration of bone loss with a high survival rate of the implant in the medium to long term. The new 3D Metal Cage is designed to offer high friction for the initial stability. The high porosity of the 3D Metal structure creates a favorable environment for bone growth, thus providing valid secondary fixation reproducing the results achieved with the 3D metal press fit cup


Bone & Joint 360
Vol. 10, Issue 5 | Pages 12 - 13
1 Oct 2021


Bone & Joint 360
Vol. 10, Issue 5 | Pages 43 - 45
1 Oct 2021


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 299 - 304
1 Feb 2021
Goto E Umeda H Otsubo M Teranishi T

Aims

Various surgical techniques have been described for total hip arthroplasty (THA) in patients with Crowe type III dislocated hips, who have a large acetabular bone defect. The aim of this study was to evaluate the long-term clinical results of patients in whom anatomical reconstruction of the acetabulum was performed using a cemented acetabular component and autologous bone graft from the femoral neck.

Methods

A total of 22 patients with Crowe type III dislocated hips underwent 28 THAs using bone graft from the femoral neck between 1979 and 2000. A Charnley cemented acetabular component was placed at the level of the true acetabulum after preparation with bone grafting. All patients were female with a mean age at the time of surgery of 54 years (35 to 68). A total of 18 patients (21 THAs) were followed for a mean of 27.2 years (20 to 33) after the operation.


Bone & Joint 360
Vol. 9, Issue 5 | Pages 4 - 9
1 Oct 2020
Matthews E Waterson HB Phillips JR Toms AD


Bone & Joint Open
Vol. 1, Issue 5 | Pages 152 - 159
22 May 2020
Oommen AT Chandy VJ Jeyaraj C Kandagaddala M Hariharan TD Arun Shankar A Poonnoose PM Korula RJ

Aims

Complex total hip arthroplasty (THA) with subtrochanteric shortening osteotomy is necessary in conditions other than developmental dysplasia of the hip (DDH) and septic arthritis sequelae with significant proximal femur migration. Our aim was to evaluate the hip centre restoration with THAs in these hips.

Methods

In all, 27 THAs in 25 patients requiring THA with femoral shortening between 2012 and 2019 were assessed. Bilateral shortening was required in two patients. Subtrochanteric shortening was required in 14 out of 27 hips (51.9%) with aetiology other than DDH or septic arthritis. Vertical centre of rotation (VCOR), horizontal centre of rotation, offset, and functional outcome was calculated. The mean followup was 24.4 months (5 to 92 months).


Bone & Joint Research
Vol. 9, Issue 5 | Pages 242 - 249
1 May 2020
Bali K Smit K Ibrahim M Poitras S Wilkin G Galmiche R Belzile E Beaulé PE

Aims

The aim of the current study was to assess the reliability of the Ottawa classification for symptomatic acetabular dysplasia.

Methods

In all, 134 consecutive hips that underwent periacetabular osteotomy were categorized using a validated software (Hip2Norm) into four categories of normal, lateral/global, anterior, or posterior. A total of 74 cases were selected for reliability analysis, and these included 44 dysplastic and 30 normal hips. A group of six blinded fellowship-trained raters, provided with the classification system, looked at these radiographs at two separate timepoints to classify the hips using standard radiological measurements. Thereafter, a consensus meeting was held where a modified flow diagram was devised, before a third reading by four raters using a separate set of 74 radiographs took place.


Bone & Joint 360
Vol. 8, Issue 4 | Pages 39 - 42
1 Aug 2019


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1442 - 1448
1 Nov 2018
Hipfl C Janz V Löchel J Perka C Wassilew GI

Aims

Severe acetabular bone loss and pelvic discontinuity (PD) present particular challenges in revision total hip arthroplasty. To deal with such complex situations, cup-cage reconstruction has emerged as an option for treating this situation. We aimed to examine our success in using this technique for these anatomical problems.

Patients and Methods

We undertook a retrospective, single-centre series of 35 hips in 34 patients (seven male, 27 female) treated with a cup-cage construct using a trabecular metal shell in conjunction with a titanium cage, for severe acetabular bone loss between 2011 and 2015. The mean age at the time of surgery was 70 years (42 to 85) and all patients had an acetabular defect graded as Paprosky Type 2C through to 3B, with 24 hips (69%) having PD. The mean follow-up was 47 months (25 to 84).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 31 - 31
1 Jun 2018
Rosenberg A
Full Access

Down syndrome (DS), is a genetic disorder caused by a third copy of the 21st chromosome (Trisomy 21), featuring typical facial characteristics, growth delays and varying degrees of intellectual disability. Some degree of immune deficiency is variably present. Multiple orthopaedic conditions are associated, including stunted growth (90%), ligamentous laxity (90%), low muscle tone (80%), hand and foot deformities (60%), hip instability (30%), and spinal abnormalities including atlanto-axial instability (20%) and scoliosis. Hip disease severity varies and follows a variable time course. Rarely a child presents with DDH, but during the first 2 years the hips are characteristically stable but hypermobile with well-formed acetabulae. Spontaneous subluxation or dislocation after 2 presents with painless clicking, limping or giving way. Acute dislocation is associated with moderate pain, increased limp and reduced activity following minor trauma. Hips are reducible under anesthesia, but recurrence is common. Eventually concentric reduction becomes rarer and radiographic dysplasia develops. Pathology includes: a thin, weak fibrous capsule, moderate to severe femoral neck anteversion and a posterior superior acetabular rim deficiency. A number of femoral and acetabular osteotomies have been reported to treat the dysplasia, with acetabular redirection appearing to be most successful. However, surgery can be associated with a relatively high infection rate (20%). Additionally, symptomatic femoral head avascular necrosis can occur as a result of slipped capital femoral epiphysis. Untreated dysplasia patients can walk with a limp and little pain into the early twenties even with fixed dislocation. Pain and decreasing hip function is commonly seen as the patient enters adult life. Occasionally the hip instability begins after skeletal maturity. Total hip arthroplasty (THA) is the standard treatment when sufficient symptoms have developed. The clinical outcomes of 42 THAs in patients with Down syndrome were all successfully treated with standard components. The use of constrained liners to treat intra-operative instability occurred in eight hips and survival rates were noted between 81% and 100% at a mean follow-up of 105 months (6 – 292 months). A more recent study of 241 patients with Down syndrome and a matched 723-patient cohort from the Nationwide Inpatient Sample compared the incidence of peri-operative medical and surgical complications in those who underwent THA. Compared to matched controls, Down syndrome patients had an increased risk of complications: peri-operative (OR, 4.33; P<.001), medical (UTI & Pneumonia OR, 4.59; P<.001) and surgical (bleeding OR, 3.51; P<.001), Mean LOS was 26% longer (P<.001). While these patients can be challenging to treat, excellent surgical technique and selective use of acetabular constraint can reliably provide patients with excellent pain-relief and improved function. Pre-operative education of all clinical decision makers should also reinforce the increased risk of medical and surgical complications (wound hemorrhage), and lengths of stay compared to the general population


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 50 - 54
1 Jan 2018
Berend ME Berend KR Lombardi AV Cates H Faris P

Aims

Few reconstructive techniques are available for patients requiring complex acetabular revisions such as those involving Paprosky type 2C, 3A and 3B deficiencies and pelvic discontinuity. Our aim was to describe the development of the patient specific Triflange acetabular component for use in these patients, the surgical technique and mid-term results. We include a description of the pre-operative CT scanning, the construction of a model, operative planning, and surgical technique. All implants were coated with porous plasma spray and hydroxyapatite if desired.

Patients and Methods

A multicentre, retrospective review of 95 complex acetabular reconstructions in 94 patients was performed. A total of 61 (64.2%) were female. The mean age of the patients was 66 (38 to 85). The mean body mass index was 29 kg/m2 (18 to 51). Outcome was reported using the Harris Hip Score (HHS), complications, failures and survival.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 99 - 99
1 Aug 2017
Lewallen D
Full Access

Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring. Three separate patterns of augment placement have been utilised in our practice since the development of these implants a decade ago: Type 1 - augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely, but the need for structural bone is avoided. From 2000 through 2007, porous tantalum acetabular augments were used very selectively in 85 revision THA procedures out of total of the 1,789 revision hip cases performed at our institution. All cases had associated massive acetabular deficiency precluding stable mechanical support for a cup alone. Fifty-eight hips had complete radiographic and clinical follow at minimum 5 years. The majority of patients had either Paprosky type 3A defects (28/58, 48%) or 3B defects (22/58, 38%). Ten out of 58 had pre-operative pelvic discontinuities. Three separate patterns of augment placement were utilised: Type 1 - augment screwed onto the superolateral acetabular rim (21%), Type 2 – augment fixed to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect (34%), and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial medial wall (45%). At 5 years, 2/58 (3%) were revised for aseptic loosening and another 6/58 demonstrated incomplete radiolucencies between the acetabular shell and zone 3. One of the revised cups and 5 of 6 of the cups with radiolucencies had an associated pelvic discontinuity. Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Smaller patients are more likely to require this approach as reaming away defects to allow insertion of a jumbo cup is more difficult with a smaller AP dimension to the acetabular columns and less local bone for implant support. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term