The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids. Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.Aims
Methods
Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE. From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up.Aims
Methods
Several short- and mid-term studies have shown minimal liner wear of highly cross-linked polyethylene (HXLPE) in total hip arthroplasty (THA), but the safety of using thinner HXLPE liners to maximize femoral head size remains uncertain. The objective of this study was to analyze clinical survival and radiological wear rates of patients with HXLPE liners, a 36 mm femoral head, and a small acetabular component with a minimum of ten years’ follow-up. We retrospectively identified 55 patients who underwent primary THA performed at a single centre, using HXLPE liners with 36 mm cobalt-chrome heads in acetabular components with an outer diameter of 52 mm or smaller. Patient demographic details, implant details, death, and all-cause revisions were recorded. Cox regression and Kaplan-Meier survival was used to determine all-cause and liner-specific revision. Of these 55 patients, 22 had a minimum radiological follow-up of seven years and were assessed radiologically for linear and volumetric wear.Aims
Methods
This study reports the ten-year wear rates, incidence of osteolysis, clinical outcomes, and complications of a multicentre randomized controlled trial comparing oxidized zirconium (OxZr) versus cobalt-chrome (CoCr) femoral heads with ultra-high molecular weight polyethylene (UHMWPE) and highly cross-linked polyethylene (XLPE) liners in total hip arthroplasty (THA). Patients undergoing primary THA were recruited from four institutions and prospectively allocated to the following treatment groups: Group A, CoCr femoral head with XLPE liner; Group B, OxZr femoral head with XLPE liner; and Group C, OxZr femoral head with UHMWPE liner. All study patients and assessors recording outcomes were blinded to the treatment groups. The outcomes of 262 study patients were analyzed at ten years’ follow-up.Aims
Methods
The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays.Aims
Methods
Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance. An institutional review board-approved retrieval archive was surveyed for modular PE tibial inserts over a range of in vivo duration (mean 58 months (0 to 290)). Five knee designs, totalling 1,585 devices, were studied. Insert wear was estimated from measured thickness change using a previously published method. Linear regression statistical analyses were used to test association of 12 patient and implant design variables with calculated wear rate.Aims
Methods
Highly cross-linked polyethylene (HXLPE) has greatly improved the durability of total hip arthroplasty (THA) in young patients because of its improved wear characteristics. Few studies have followed this population into the second decade, and therefore the purpose of this investigation was to evaluate the clinical outcome for THA patients 50 years of age and younger at a minimum of 15 years postoperatively. The second purpose was to evaluate the radiological findings secondary to wear or mechanical failure of the implant. Between October 1999 and December 2005, 105 THAs were performed in 95 patients (53 female, 42 male) aged 50 years and younger (mean 42 years (20 to 50)). There were 87 patients (96 hips) that were followed for a minimum of 15 years (mean 17.3 years (15 to 21)) for analysis. Posterior approach was used with cementless fixation with a median head size of 28 mm. HXLPE was the acetabular bearing for all hips. Radiographs were evaluated for polyethylene wear, radiolucent lines, and osteolysis.Aims
Methods
We aimed to investigate if the use of the largest possible cobalt-chromium head articulating with polyethylene acetabular inserts would increase the in vivo wear rate in total hip arthroplasty. In a single-blinded randomized controlled trial, 96 patients (43 females), at a median age of 63 years (interquartile range (IQR) 57 to 69), were allocated to receive either the largest possible modular femoral head (36 mm to 44 mm) in the thinnest possible insert or a standard 32 mm head. All patients received a vitamin E-doped cross-linked polyethylene insert and a cobalt-chromium head. The primary outcome was proximal head penetration measured with radiostereometric analysis (RSA) at two years. Secondary outcomes were volumetric wear, periacetabular radiolucencies, and patient-reported outcomes.Aims
Methods
Aims. Vitamin E-infused highly cross-linked polyethylene (E1) has recently been introduced in total knee arthroplasty (TKA). An in vitro wear simulator study showed that E1 reduced polyethylene wear. However there is no published information regarding in vivo wear. Previous reports suggest that newly introduced materials which reduce in vitro polyethylene wear do not necessarily reduce in vivo polyethylene wear. To assist in the evaluation of the newly introduced material before widespread use, we established an in vivo polyethylene
We present the results, in terms of survival, clinical outcome, and radiological appearance at 20 years, in a cohort of 225 cemented Exeter Universal femoral components (Stryker, Newbury, UK) implanted in 207 patients, at a district general hospital. All patients in this study had a total hip arthroplasty (THA) using an Exeter Universal femoral component with a cemented (n = 215) or cementless (n = 10) acetabular component. Clinical and radiological data were collected prospectively at one year, five years, and every five years thereafter. Patients lost to radiological and clinical follow-up (five) were cross-referenced with National Joint Registry (NJR) data and general practitioner (GP) records to assess whether they had undergone revision for any reason.Aims
Methods
Introduction. Ideally, standardized wear testing protocols replicate the in vivo motions and forces of TKR patients. In a previous study with 30 TKR patients, two distinct in vivo gait patterns emerged, one characterized as having low anteroposterior (AP-L) motion and the other high anteroposterior (AP-H) motion. The aim of this study was to determine the effect of the two in vivo-determined gait patterns on total and backside insert wear in comparison with the ISO standard 14243-3. In order to differentiate and accurately quantify topside and backside wear, a novel technique was employed where different lanthanide tracers are incorporated into the polyethylene during manufacture. Materials and Methods. Components from the Zimmer NexGen CR Knee Replacement System were used. Europium (Eu) and Gadolinium (Gd)-stearates were mechanically mixed with GUR1050 UHMWPE resin to obtain two tracer-UHMWPE resins containing 49.1±1.5 ppm Eu and 68.8±1.6 ppm Gd, respectively. 12 grams of the Eu-doped resin was placed on the bottom, 10 grams of virgin GUR1050 resin was placed in the middle, and 10 grams of Gd-doped resin was placed on the top to mold NexGen CR tibial inserts. The backside was then machined to interlock with the tibial baseplate. The minimum insert thickness was 10 mm. All inserts were packaged in nitrogen and gamma sterilized. The wear test was conducted on a 4-station knee simulator in displacement-control mode. Simulator input was obtained from ISO 14243-3 and from gait of 30 NexGen TKR subjects, previously categorized into low (AP-L) and high (AP-H) anteroposterior motion groups. Per station, each insert was sequentially subjected to ISO, AP-L, AP-H motion for 2 Mc at 1 Hz. Subsequently, the ISO profile was repeated. Tibial inserts were weighed and lubricant samples were taken after every 0.5 Mc interval. Knowing the Eu and Gd concentrations from ICP-MS analysis, and normalizing those to the concentrations in the polyethylene inserts, the localized (Eu – backside; Gd – topside) wear was calculated.
Introduction. Patella implant research is often overlooked despite its importance as the third compartment in a total knee replacement. Wear and fracture of resurfaced patellae can lead to implant failure and revision surgeries. New simulation techniques have been developed to analyze the performance of patella designs as they interact with the trochlear groove in total knee components, and clinical validation is sought to ensure that these simulations are appropriate. The objective of this work was to subject several patellar designs to patient-derived deep knee bend (DKB) inputs on a 6 degree of freedom (DOF) simulator and compare the resultant wear scars to clinical retrievals. Materials and Methods. Previously reported DKB profiles were developed based on in vivo patellofemoral data and include a wide range of patient variability. The profiles chosen for this body of work were based on the stress in the patellar lateral facet; maximizing this stress whilst maintaining the ability to run the profile stably on the simulator. Load/kinematic profiles were run on three patellar designs (n=3 per group) for 220,000 cycles at 0.8Hz on an AMTI VIVO joint simulator. A comparison cohort of clinically retrieved devices of the same design was identified in an IRB-approved database. Exclusion criteria included gross delamination, cracking secondary to oxidation, and surgeon-reported evidence of malalignment leading to mal-tracking. 29 Patellae were included for analysis: PFC. ®. All Poly (n=14), ATTUNE. ®. Anatomic (n=6), and ATTUNE. ®. Medialized Dome (n=9). Mean in vivo duration was 70.1 months. Patellae were analyzed under optical microscope in large-depth-of-field mode to map the surface damage profile. Burnishing ‘heat-maps’ were generated for retrievals and simulated patellae by normalizing the patellar size and overlaying silhouettes from each component of the same type using a custom-developed MatLAB code. Results. Burnishing heat-map comparisons between retrievals and simulator specimens for each of the three designs were compared. Retrievals show more variation than simulator devices, however the general loci and relative area of burnished regions is closely aligned for each of the three designs. The retrieved and simulated burnishing scar heat-maps on all-poly PFC. ®. patellae are centered medio-laterally with a wider profile on the lateral aspect. The burnishing marks are continuous. A similar observation may be made of the ATTUNE. ®. medialized dome, retrievals and simulator specimens, though the contact areas appear to be more concentrated away from the apex. The anatomic patellae show two primary regions of contact, and minimal burnishing at the apex. The simulator specimens likewise show two principal regions of contact. Discussion.
A retrospective study was conducted to measure short-term Nonweightbearing supine RSA exams were performed postoperatively and at six, 12, and 24 months. Weightbearing standing RSA exams were performed on select patients at 12 and 24 months. Wear was measured both linearly (joint space) and volumetrically (digital model overlap) at each available follow-up. Precision of both methods was assessed by comparing double RSA exams. Patient age, sex, body mass index, and Oxford Knee Scores were analyzed for any association with PE wear.Aims
Patients and Methods
The aim of this study was to conduct the largest low contact stress (LCS) retrieval study to elucidate the failure mechanisms of the Porocoat and Duofix femoral component. The latter design was voluntarily recalled by the manufacturer. Uncemented LCS explants were divided into three groups: Duofix, Porocoat, and mixed. Demographics, polyethylene wear, tissue ingrowth, and metallurgical analyses were performed.Aims
Materials and Methods
Aims. In the 1990s, a bioactive bone cement (BABC) containing apatite-wollastonite glass-ceramic (AW-GC) powder and bisphenol-a-glycidyl methacrylate resin was developed at our hospital. In 1996, we used BABC to fix the acetabular component in primary total hip arthroplasty (THA) in 20 patients as part of a clinical trial. The purpose of this study was to investigate the long-term results of primary THA using BABC. Patients and Methods. A total of 20 patients (three men and 17 women) with a mean age of 57.4 years (40 to 71), a mean body weight of 52.3 kg (39 to 64), and a mean body mass index (BMI) of 23.0 kg/m. 2. (19.8 to 28.6) were evaluated clinically and radiologically. Survival analyses were undertaken, and wear analyses were carried out using a computer-aided method. Results. The mean follow-up was 17.6 years (1.5 to 21.1). Radiological loosening occurred in four sockets with aseptic loosening at a mean of 7.8 years (1.5 to 20.7). Kaplan–Meier survival analyses using revision of the acetabular component, radiological loosening of the acetabular component, and the worst-case scenario with revision of the acetabular component to include the two patients lost to follow-up as endpoints yielded survival rates of 94.7%, 84.4%, and 85.0% at ten years, and 70.0%, 84.4%, and 62.8% at 20 years, respectively.
Vitamin E-diffused, highly crosslinked polyethylene (VEPE) and porous titanium-coated (PTC) shells were introduced in total hip arthroplasty (THA) to reduce the risk of aseptic loosening. The purpose of this study was: 1) to compare the wear properties of VEPE to moderately crosslinked polyethylene; 2) to assess the stability of PTC shells; and 3) to report their clinical outcomes at seven years. A total of 89 patients were enrolled into a prospective study. All patients received a PTC shell and were randomized to receive a VEPE liner (n = 44) or a moderately crosslinked polyethylene (ModXLPE) liner (n = 45). Radiostereometric analysis (RSA) was used to measure polyethylene wear and component migration. Differences in wear were assessed while adjusting for body mass index, activity level, acetabular inclination, anteversion, and head size. Plain radiographs were assessed for radiolucency and patient-reported outcome measures (PROMs) were administered at each follow-up.Aims
Patients and Methods
Introduction. Wear of polyethylene tibial inserts has been cited as being responsible for up to 25% of revision surgeries, imposing a very significant cost burden on the health care system and increasing patient risk. Accurate measurement of material loss from retrieved knee bearings presents difficult challenges because gravimetric methods are not useful with retrievals and unworn reference dimensions are often unavailable. Geometry and the local anatomy restrict in vivo radiographic
Medical advances and an ageing population mean that more people than ever rely on artificial joints. In the past years, shoulder joint replacement has developed rapidly and the numbers of shoulder prostheses implanted increased dramatically. Wear is one of the main contributors to the failure of shoulder implants. It is therefore important to measure the wear properties of the articulating surfaces within the joint Imperial shoulder simulator was designed with six articulating stations and one loaded soak control station for anatomical shoulder system wear simulation. It gives an adduction-abduction (AA) range of-15° to 55°, flexion-extension (FE) range of −90° to 90° and internal external rotation (IER) range of 15° to −90°. The rotations are applied simultaneously to the humeral implants by using stepper motors with integral position encoders. Axial and shear loadings to each glenoid implant were applied using pneumatic cylinders. Force controlled translations were recorded using load cells and LVDTs, and a data acquisition system. Pneumatic cylinders were also installed to work to counterbalance weights during the motion of adduction-abduction. All bearing pairs are within isolated and sealed test chambers to prevent loss of fluid through evaporation, and cross contamination of third body wear (as recommended in F1714-96). The simulator is controlled by LabVIEW program allowing to reproduce shoulder activities of daily living.Background
Materials and Methods
Objectives. We investigated the reliability of the cobalt-chromium (CoCr) synovial joint fluid ratio (JFR) in identifying the presence of a severe aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) response and/or suboptimal taper performance (SOTP) following metal-on-metal (MoM) hip arthroplasty. We then examined the possibility that the CoCr JFR may influence the serum partitioning of Co and Cr. Methods. For part A, we included all revision surgeries carried out at our unit with the relevant data, including volumetric