Proximal humeral shaft fractures are commonly treated with long straight plates or intramedullary nails. Helical plates might overcome the downsides of these techniques as they are able to avoid the radial nerve distally. The aim of this study was to investigate in an artificial bone model: (1) the biomechanical competence of different plate designs and (2) to compare them against the alternative treatment option of intramedullary nails. Twenty-four artificial humeri were assigned in 4 groups and instrumented as follows: group1 (straight 10-hole-PHILOS), group2 (MULTILOCK-nail), group3 (45°-helical-PHILOS) and group4 (90°-helical-PHILOS). An unstable proximal humeral shaft fracture was simulated. Specimens were tested under quasi-static loading in axial compression, internal/external rotation and bending in 4 directions monitored by optical motion tracking. Axial displacement (mm) was significantly lower in group2 (0.1±0.1) compared to all other groups (1: 3.7±0.6; 3: 3.8±0.8; 4: 3.5±0.4), p<0.001. Varus stiffness in group2 (0.8±0.1) was significantly higher compared to groups1+3, p≤0.013 (1: 0.7±0.1; 3: 0.7±0.1; 4: 0.8±0.1). Varus bending (°) was significantly lower in group2 compared to all other groups (p<0.001) and group4 to group1, p=0.022. Flexion stiffness in group1 was significantly higher compared to groups2+4 (p≤0,03) and group4 to group1, p≤0,029 (1: 0.8±0.1; 2: 0.7±0.1; 3: 0.7±0.1; 4: 0.6±0.1). Flexion bending (°) in group4 was higher compared to all other groups (p≤0.024) and lower in group2 compared to groups1+4, p≤0.024.
Abstract. Objective. To compare the periprosthetic fracture mechanics between a collared and collarless fully coated cementless femoral stem in a composite femur. Methods. Two groups of six composite femurs (‘Osteoporotic femur’, SawBones, WA USA) were implanted with either a collared (collared group) or collarless (collarless group) cementless femoral stem which was otherwise identical by a single experienced surgeon. Periprosthetic fractures of the femur were simulated using a previously published technique. High speed video recording was used to identify fracture mechanism. Fracture torque and angular displacement were measured and rotational work and system stiffness were estimated for each trial. Results were compared between collared and collarless group and the comparison was evaluated against previously published work using fresh frozen femurs and the same protocol. Results. In composite femur testing median fracture torque (IQR) was greater with a collared versus collarless implant (48.41 [42.60 to 50.27] Nm versus 45.12 [39.13 to 48.09] Nm, p= 0.4). Median rotational displacement (IQR) was less with a collared versus collarless implant (0.29 [0.27 to 0.31] radians versus 0.33 [0.32 to 0.34] radians, p= 0.07). Estimated rotary work was similar between groups (5.76 [4.92 to 6.64] J versus 5.21 [4.25 to 6.04] J, p= 0.4).
It is common belief that consolidated intramedullary nailed trochanteric femur fractures can result in secondary midshaft or supracondylar fractures, involving the distal screws, when short or long nails are used, respectively. In addition, limited data exists in the literature to indicate when short or long nails should be selected for treatment. The aim of this biomechanical cadaveric study was to investigate short versus long Trochanteric Femoral Nail Advanced (TFNA) fixation in terms of construct stability and generation of secondary fracture pattern following trochanteric fracture consolidation. Eight intact human cadaveric femur pairs were assigned to 2 groups of 8 specimens each for nailing using either short or long TFNA with blade as head element. Each specimen was first biomechanically preloaded at 1 Hz over 2000 cycles in superimposed synchronous axial compression to 1800 N and internal rotation to 11.5 Nm. Following, internal rotation to failure was applied over an arc of 90° within 1 second under 700 N axial load.
External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.Objectives
Methods
We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry.Objectives
Materials and Methods
We investigated a new intramedullary locking
nail that allows the distal interlocking screws to be locked to
the nail. We compared fixation using this new implant with fixation
using either a conventional nail or a locking plate in a laboratory
simulation of an osteoporotic fracture of the distal femur. A total
of 15 human cadaver femora were used to simulate an AO 33-A3 fracture
pattern. Paired specimens compared fixation using either a locking
or non-locking retrograde nail, and using either a locking retrograde
nail or a locking plate. The constructs underwent cyclical loading
to simulate single-leg stance up to 125 000 cycles. Axial and torsional
stiffness and displacement, cycles to failure and modes of failure
were recorded for each specimen. When compared with locking plate
constructs, locking nail constructs had significantly longer mean
fatigue life (75 800 cycles ( The new locking retrograde femoral nail showed better stiffness
and fatigue life than locking plates, and superior fatigue life
to non-locking nails, which may be advantageous in elderly patients. Cite this article:
The use of two implants to manage concomitant ipsilateral femoral
shaft and proximal femoral fractures has been indicated, but no
studies address the relationship of dynamic hip screw (DHS) side
plate screws and the intramedullary nail where failure might occur
after union. This study compares different implant configurations
in order to investigate bridging the gap between the distal DHS
and tip of the intramedullary nail. A total of 29 left synthetic femora were tested in three groups:
1) gapped short nail (GSN); 2) unicortical short nail (USN), differing
from GSN by the use of two unicortical bridging screws; and 3) bicortical
long nail (BLN), with two angled bicortical and one unicortical bridging
screws. With these findings, five matched-pairs of cadaveric femora
were tested in two groups: 1) unicortical long nail (ULN), with
a longer nail than USN and three bridging unicortical screws; and
2) BLN. Specimens were axially loaded to 22.7 kg (50 lb), and internally
rotated 90°/sec until failure.Objectives
Methods
Introduction: Non-invasive prediction of load bearing capacity during consolidation of distraction osteogenesis and fracture healing would represent a significant advance in the treatment of patients by defining the appropriate point of time for the removal of the fixator externe. Thereby the risk of refracture, malunion and infection could be reduced. Several methods have been proposed in the past to predict the load bearing capacity: dual-energy x-ray absorptiometry (DEXA), stiffness measurements, quantitative computed tomography, quantitative radiography and ultrasound. In this ex-vivo study stiffness- and DEXA-measurements were compared regarding their suitability to predict the load bearing capacity of bone regenerate. In addition this study analysed how compressive, bending and torsional stiffness as suitable tools were related to the torsional load bearing capacity using a common set of bone regenerate samples of 26 sheep treated with distraction osteogenesis. Material and Methods: After osteotomy the sheep tibiae were stabilized using an external half-ring Ilizarov fixator. Followed by a 4-day latency period the tibiae were distracted at a rate of 1.25 mm per day in two increments for 20 days. On the 74th day the sheep were sacrificed and tibiae were harvested. The ends of the specimens were embedded in PMMA for further biomechanical testing. Therefore, the specimens were mounted to a sequence of special costume made jigs for compressive testing, 4-point bending and torsional testing in a material testing machine. Stiffness was calculated by regression of the linear part of the load-displacement curves. The maximum torsional moment of the specimens was determined in a final experiment. In addition the bone mineral density (BMD) of the distracted bone tissue was measured using DEXA. The correlation between the maximum torsional moment and the various types of stiffness respectively BMD was analysed to gain information about the suitability predicting the load bearing capacity. Results:
Purpose: Little has been written about the size of bone defect that could be restored with one-stage lengthening over a reamed intramedullary nail. The aim of this study was to investigate the mechanical properties of the callus created at gaps of various sizes in sheep tibiae treated with reamed intramedullary nailing. Material-Methods: Sixteen adult female sheep were divided into four main groups: a simple osteotomy group (group I) and three segmental defect groups (1, 2, and 3 cm gap; groups I to III). One intact left tibia from each group was also used as the non-osteotomized intact-control group (group V). In all cases the osteotomy was fixed with an interlocked Universal Humeral Nail after 7 mm reaming. The osteotomized site was closed in layers including the periosteum without additional bone grafting and the limb was protected with long soft cast for 5 weeks postoperatively. Healing of the osteotomies was evaluated after 16 weeks by biomechanical testing. The examined parameters were torsional stiffness, shear stress and angle of torsion at the time of fracture. Results: Samples with a simple osteotomy or 1 cm gap were fractured distally to the callus zone, whereas samples with 2 and 3 cm gaps were fractured at the callus zone or at distal metaphysis. The regenerate bone obvious in the x-rays in the group of 1 cm and 2 cm gap had considerable mechanical properties.
Introduction Non-invasive prediction of load bearing capacity is an important issue in the advanced clinical treatment of distraction osteogenesis in order to define the appropriate point of time for the removal of the external fixateur. Therefore, non-invasive stiffness measurements were recommended as a promising tool due to the high correlation between strength and various kinds of
We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone. Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group. These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment.