AM Open Cell porous Ti Structures were investigated for compressive strength, morphology (i.e. pore size, struts size and porosity), and wear resistance with the aim to improve design capability at support of implant manufacturing. Specimens were manufactured in Ti6Al4V using a SLM machine.
This study examined the stability of two different hexapod frames at increasing strut angles and the possible use of an additional strut to aid stability. Hexapod frames have certain advantages over standard circular frames, however disadvantages include a rattle and instability at some strut angles. This could be particularly important when larger diameter rings are used over a shorter distance resulting in lower ring strut angles such as in the femur.A statement of the purposes of the study
Introduction
We determined the midterm survival, incidence
of peri-prosthetic fracture and the enhancement of the width of
the femur when combining struts and impacted bone allografts in
24 patients (25 hips) with severe femoral bone loss who underwent
revision hip surgery. The pre-operative diagnosis was aseptic loosening
in 16 hips, second-stage reconstruction in seven, peri-prosthetic
fracture in one and stem fracture in one hip. A total of 14 hips
presented with an Endoklinik grade 4 defect and 11 hips a grade
3 defect. The mean pre-operative Merle D’Aubigné and Postel score
was 5.5 points (1 to 8). The survivorship was 96% (95% confidence interval 72 to 98) at
a mean of 54.5 months (36 to 109). The mean functional score was
17.3 points (16 to 18). One patient in which the strut did not completely
bypass the femoral defect was further revised using a long cemented
stem due to peri-prosthetic fracture at six months post-operatively.
The mean subsidence of the stem was 1.6 mm (1 to 3). There was no
evidence of osteolysis, resorption or radiolucencies during follow-up
in any hip. Femoral width was enhanced by a mean of 41% (19% to
82%). A total of 24 hips had partial or complete bridging of the
strut allografts. This combined biological method was associated with a favourable
survivorship, a low incidence of peri-prosthetic fracture and enhancement
of the width of the femur in revision total hip replacement in patients
with severe proximal femoral bone loss.
We retrospectively evaluated 18 patients with a mean age of 37.3 years (14 to 72) who had undergone pelvic reconstruction stabilised with a non-vascularised fibular graft after resection of a primary bone tumour. The mean follow-up was 10.14 years (2.4 to 15.7). The mean Musculoskeletal Tumor Society Score was 76.5% (50% to 100%). Primary union was achieved in the majority of reconstructions within a mean of 22.9 weeks (7 to 60.6). The three patients with delayed or nonunion all received additional therapy (chemotherapy/radiation) (p = 0.0162). The complication rate was comparable to that of other techniques described in the literature. Non-vascularised fibular transfer to the pelvis is a simpler, cheaper and quicker procedure than other currently described techniques. It is a biological reconstruction with good results and a relatively low donor site complication rate. However, adjuvant therapy can negatively affect the outcome of such grafts.