Advertisement for orthosearch.org.uk
Results 1 - 20 of 56
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1039 - 1043
1 Oct 2024
Luo TD Kayani B Magan A Haddad FS

The subject of noise in the operating theatre was recognized as early as 1972 and has been compared to noise levels on a busy highway. While noise-induced hearing loss in orthopaedic surgery specifically has been recognized as early as the 1990s, it remains poorly studied. As a result, there has been renewed focus in this occupational hazard. Noise level is typically measured in decibels (dB), whereas noise adjusted for human perception uses A-weighted sound levels and is expressed in dBA. Mean operating theatre noise levels range between 51 and 75 dBA, with peak levels between 80 and 119 dBA. The greatest sources of noise emanate from powered surgical instruments, which can exceed levels as high as 140 dBA. Newer technology, such as robotic-assisted systems, contribute a potential new source of noise. This article is a narrative review of the deleterious effects of prolonged noise exposure, including noise-induced hearing loss in the operating theatre team and the patient, intraoperative miscommunication, and increased cognitive load and stress, all of which impact the surgical team’s overall performance. Interventions to mitigate the effects of noise exposure include the use of quieter surgical equipment, the implementation of sound-absorbing personal protective equipment, or changes in communication protocols. Future research endeavours should use advanced research methods and embrace technological innovations to proactively mitigate the effects of operating theatre noise.

Cite this article: Bone Joint J 2024;106-B(10):1039–1043.


Bone & Joint Open
Vol. 4, Issue 10 | Pages 791 - 800
19 Oct 2023
Fontalis A Raj RD Haddad IC Donovan C Plastow R Oussedik S Gabr A Haddad FS

Aims

In-hospital length of stay (LOS) and discharge dispositions following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, it is imperative to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge dispositions following robotic arm-assisted total knee arthroplasty (RO TKA) and unicompartmental arthroplasty (RO UKA) versus conventional technique (CO TKA and UKA).

Methods

This large-scale, single-institution study included patients of any age undergoing primary TKA (n = 1,375) or UKA (n = 337) for any cause between May 2019 and January 2023. Data extracted included patient demographics, LOS, need for post anaesthesia care unit (PACU) admission, anaesthesia type, readmission within 30 days, and discharge dispositions. Univariate and multivariate logistic regression models were also employed to identify factors and patient characteristics related to delayed discharge.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 37 - 37
7 Aug 2023
Mudiganty S Jayadev C Carrington R Miles J Donaldson J Mcculloch R
Full Access

Abstract. Introduction. Total knee replacement (TKR) in patients with skeletal dysplasia is technically challenging surgery due to deformity, joint contracture, and associated co-morbidities. The aim of this study is to follow up patients with skeletal dysplasia following a TKR. Methodology. We retrospectively reviewed 22 patients with skeletal dysplasia who underwent 31 TKRs at our institution between 2006 and 2022. Clinical notes, operative records and radiographic data were reviewed. Results. Achondroplasia was the most common skeletal dysplasia (8), followed by Chondrodysplasia punctata (7) and Spondyloepiphyseal dysplasia (5). There were fourteen men and eight women with mean age of 51 years (28 to 73). The average height of patients was 1.4 metres (1.16–1.75) and the mean weight was 64.8 Kg (34.3–100). The mean follow up duration was 68.32 months (1–161). Three patients died during follow up. Custom implants were required in twelve patients (38.71%). Custom jigs were utilised in six patients and two patients underwent robotic assisted surgery. Hinged TKR was used in seventeen patients (54.84%), posterior stabilised TKR in nine patients (29.03%), and cruciate retaining TKR in five patients (16.13%). One patient underwent a patella resurfacing for persistent anterior knee pain and another had an intra-operative medial tibial plateau fracture which was managed with fixation. No revisions occurred during the follow up period. Conclusion. Despite the technical challenges and complexity of TKR within this unique patient group, we demonstrate good implant survivorship during the study period. Cross sectional imaging is recommended preoperatively for precise planning and templating


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 57 - 57
23 Jun 2023
Konishi T Sato T Motomura G Hamai S Kawahara S Hara D Utsunomiya T Nakashima Y
Full Access

Accurate cup placement in total hip arthroplasty (THA) for the patients with developmental dysplasia of the hip (DDH) is one of the challenges due to distinctive bone deformity. Robotic-arm assisted system have been developed to improve the accuracy of implant placement. This study aimed to compare the accuracy of robotic-arm assisted (Robo-THA), CT-based navigated (Navi-THA), and manual (M-THA) cup position and orientation in THA for DDH.

A total of 285 patients (335 hips) including 202 M-THAs, 45 Navi-THAs, and 88 Robo-THA were analyzed. The choice of procedure followed the patient's preferences. Horizontal and vertical center of rotation (HCOR and VCOR) were measured for cup position, and radiographic inclination (RI) and anteversion (RA) were measured for cup orientation. The propensity score-matching was performed among three groups to compare the absolute error from the preoperative target position and angle.

Navi-THA showed significantly smaller absolute errors than M-THA in RI (3.6° and 5.4°) and RA (3.8° and 6.0°), however, there were no significant differences between them in HCOR (2.5 mm and 3.0 mm) or VCOR (2.2 mm and 2.6 mm). In contrast, Robo-THA showed significantly smaller absolute errors of cup position than both M-THA and Navi-THA (HCOR: 1.7 mm and 2.9 mm, vs. M-THA, 1.6 mm and 2.5 mm vs. Navi-THA, VCOR:1.7 mm and 2.4 mm, vs. M-THA, 1.4 mm and 2.2 mm vs. Navi-THA). Robo-THA also showed significantly smaller absolute errors of cup orientation than both M-THA and Navi-THA (RI: 1.4° and 5.7°, vs. M-THA, 1.5° and 3.6°, vs. Navi-THA, RA: 1.9° and 5.8° vs. M-THA, 2.1° and 3.8° vs. Navi-THA).

Robotic-arm assisted system showed more accurate cup position and orientation compared to manual and CT-based navigation in THA for DDH. CT-based navigation increased the accuracy of cup orientation compared to manual procedures, but not cup position.


Bone & Joint 360
Vol. 12, Issue 1 | Pages 26 - 29
1 Feb 2023

The February 2023 Wrist & Hand Roundup360 looks at: ‘Self-care’ protocol for minimally displaced distal radius fractures; Treatment strategies for acute Seymour fractures in children and adolescents: including crushed open fractures; Routinely collected outcomes of proximal row carpectomy; Moving minor hand surgeries in the office-based procedure room: a population-based trend analysis; A comparison between robotic-assisted scaphoid screw fixation and a freehand technique for acute scaphoid fracture: a randomized, controlled trial; Factors associated with conversion to surgical release after a steroid injection in patients with a trigger finger; Two modern total wrist arthroplasties: a randomized comparison; Triangular fibrocartilage complex suture repair reliable even in ulnar styloid nonunion.


Bone & Joint 360
Vol. 12, Issue 1 | Pages 17 - 20
1 Feb 2023

The February 2023 Hip & Pelvis Roundup360 looks at: Total hip arthroplasty or internal fixation for hip fracture?; Significant deterioration in quality of life and increased frailty in patients waiting more than six months for total hip or knee arthroplasty: a cross-sectional multicentre study; Long-term cognitive trajectory after total joint arthroplasty; Costal cartilage grafting for a large osteochondral lesion of the femoral head; Foley catheters not a problem in the short term; Revision hips still a mortality burden?; How to position implants with a robotic arm; Uncemented stems in hip fracture?


Bone & Joint Open
Vol. 2, Issue 6 | Pages 365 - 370
1 Jun 2021
Kolodychuk N Su E Alexiades MM Ren R Ojard C Waddell BS

Aims

Traditionally, acetabular component insertion during total hip arthroplasty (THA) is visually assisted in the posterior approach and fluoroscopically assisted in the anterior approach. The present study examined the accuracy of a new surgeon during anterior (NSA) and posterior (NSP) THA using robotic arm-assisted technology compared to two experienced surgeons using traditional methods.

Methods

Prospectively collected data was reviewed for 120 patients at two institutions. Data were collected on the first 30 anterior approach and the first 30 posterior approach surgeries performed by a newly graduated arthroplasty surgeon (all using robotic arm-assisted technology) and was compared to standard THA by an experienced anterior (SSA) and posterior surgeon (SSP). Acetabular component inclination, version, and leg length were calculated postoperatively and differences calculated based on postoperative film measurement.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 507 - 514
1 Mar 2021
Chang JS Kayani B Wallace C Haddad FS

Aims

Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology.

Methods

This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 38 - 38
1 Feb 2021
Hickey M Anglin C Masri B Hodgson A
Full Access

Introduction. Innovations in surgical robotics and navigation have significantly improved implant placement accuracy in total knee arthroplasty (TKA). However, many comparative studies have not been shown to substantially improve revision rates or other clinical outcome scores. We conducted a simulation study based on the reported distribution of patient-specific characteristics and estimated potential effect of coronal plane alignment (CPA) on risk of revision to evaluate the hypothesis that most published study designs in this area have been too underpowered to detect improvements in revision rates. Methods. To model previously reported studies, we generated a series of simulated TKA patient populations, assigning each patient a set of patient-specific factors (age at index surgery, BMI, and sex (Fig.1a)), as well as one surgeon-controlled factor (CPA) (Fig.1b) based on registry data and published literature. We modelled the survival probability for an individual patient at time t as a Gaussian function (exp[-(t/(k∗τ. max. )). 2. ]), where τ. max. (99.5 years) is selected to ensure the mean survival probability of the patient population matched 92% at 15 years. The value of k was adjusted for simulated patients within a range of 0 to 1 as a function of their patient and surgeon-specific factors (Fig.2). To evaluate power associated with a study design, we ran a Monte Carlo simulation generating 10,000 simulated populations of ten different cohort sizes. We divided the patient population into two groups: one group was assigned CPAs governed by the precision of a navigated/robotic approach (σ=1.5°), and the other CPAs governed by the precision of a conventional approach (σ=3°). We then simulated the time to failure for each patient, computed the corresponding Kaplan-Meier survival curves, and applied a Log-Rank test to each study to test for statistical difference. From the 10,000 simulations associated with each cohort size, we determined the percentage of simulated studies that found a statistically significant difference at each time point. Results. Figure 3 shows a contour plot illustrating the probability that a survival analysis with a specific study design would find statistical significance between the conventional and navigated/robotic patient groups. Entries from recently published literature are overlaid for context. No studies achieved statistical significance (p<0.05). Discussion. The effectiveness of navigated/robotic surgery is one of the most controversial debates in orthopedic surgery. The results from this simulation suggest that most revision studies aiming to settle this debate are likely significantly underpowered, falling below the normal 80% threshold. Limitations of this analysis include using only a single surgeon-controlled variable in the survival simulation, and only a single precision for the navigated/robotic approaches. Further studies will include more implant-related risk factors and a wider range of precisions for navigated/robotic procedures. Based on this simulation, it appears the effect size afforded by navigated/robotic surgeries on revision rates in TKA surgery is too small to recommend broad application, especially since adoption could involve added costs and unforeseen risks associated with novelty. Clinically, it may be beneficial to examine the use of robotics/navigation on high-risk patients, where studies are likely to have higher power due to larger effect sizes. For any figures or tables, please contact the authors directly


Bone & Joint Research
Vol. 10, Issue 1 | Pages 22 - 30
1 Jan 2021
Clement ND Gaston P Bell A Simpson P Macpherson G Hamilton DF Patton JT

Aims

The primary aim of this study was to compare the hip-specific functional outcome of robotic assisted total hip arthroplasty (rTHA) with manual total hip arthroplasty (mTHA) in patients with osteoarthritis (OA). Secondary aims were to compare general health improvement, patient satisfaction, and radiological component position and restoration of leg length between rTHA and mTHA.

Methods

A total of 40 patients undergoing rTHA were propensity score matched to 80 patients undergoing mTHA for OA. Patients were matched for age, sex, and preoperative function. The Oxford Hip Score (OHS), Forgotten Joint Score (FJS), and EuroQol five-dimension questionnaire (EQ-5D) were collected pre- and postoperatively (mean 10 months (SD 2.2) in rTHA group and 12 months (SD 0.3) in mTHA group). In addition, patient satisfaction was collected postoperatively. Component accuracy was assessed using Lewinnek and Callanan safe zones, and restoration of leg length were assessed radiologically.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 653 - 666
7 Oct 2020
Li W Li G Chen W Cong L

Aims

The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease.

Methods

A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1324 - 1330
3 Oct 2020
Herregodts S Verhaeghe M Paridaens R Herregodts J Vermue H Arnout N De Baets P Victor J

Aims

Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level.

Methods

A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 27 - 27
1 Jul 2020
Smith C Athwal G Ferreira L Matache B
Full Access

Glenoid replacement is a manual bone removal procedure that can be difficult for surgeons to perform. Surgical robotics have been utilized successfully in hip and knee orthopaedic procedures but there are no systems currently available in the shoulder. These robots tend to have low adoption rates by surgeons due to high costs, disruption of surgical workflow and added complexity. As well, these systems typically use optical tracking which needs a constant line-of-sight which is not conducive to a crowded operating room. The purpose of this work was developing and testing a surgical robotic system for glenoid replacement. The new surgical system utilizes flexible components that tether a Stewart Platform robot to the patient through a patient specific 3D printed mount. As the robot moves relative to the bone, reaction loads from the flexible components bending are measured by a load cell allowing the robot to “feel” its way around. As well, a small bone burring tool was attached to the robot to facilitate the necessary bone removal. The surgical system was tested against a fellowship-trained surgeon performing standard surgical techniques. Both the robot and the surgeon performed glenoid replacement on two different scapula analogs: standard anatomy and posterior glenoid edge wear referred to as a Walch B2. Six of each scapula model was tested by the robot and the surgeon. The surgeon created a pre-operative plan for both scapula analogs as a target for both methodologies. CT scans of the post-operative cemented implants were compared to the pre-operative target and implant position and orientation errors were measured. For the standard shoulder analogs the net implant position and orientation errors were 1.47 ± 0.48 mm and 2.57 ± 2.30° for the robot and 1.61 ± 0.29 mm and 5.04 ± 1.92° for the surgeon respectively. For the B2 shoulders, the net implant position and orientation errors were 2.16 ± 0.36 mm and 2.89 ± 0.88° for the robot and 3.01 ± 0.42 mm and 4.54 ± 1.49° for the surgeon respectively. The new tracking system was shown to be able to match or outperform the surgeon in most metrics. The surgeon tended to have difficulty gauging the depth needed as well as the face rotation of the implant. This was not surprising as the reaming tool used by the surgeon obscures the view of the anatomy and the spherical cutter hinders the ability to index the tool. The robot utilized only one surgical tool, the bone burr, precluding the need for multiple instruments used by the surgeon to prepare the glenoid bone bed. The force-space navigation method can be generalized to other joints, however, further work is needed to validate the system using cadaveric specimens


Bone & Joint Research
Vol. 9, Issue 6 | Pages 282 - 284
1 Jun 2020
Clement ND Calliess T Christen B Deehan DJ


Bone & Joint Research
Vol. 9, Issue 6 | Pages 279 - 281
1 Jun 2020
Clement ND Deehan DJ


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 568 - 572
1 May 2020
McDonnell JM Ahern DP Ó Doinn T Gibbons D Rodrigues KN Birch N Butler JS

Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal. There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced. Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described. The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of robotic spinal surgery. Cite this article: Bone Joint J 2020;102-B(5):568–572


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 276 - 279
1 Mar 2020
Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical environment. Functional alignment is proposed as a hybrid technique to allow mechanically-sound, soft tissue-friendly alignment targets to be identified and achieved.

Cite this article: Bone Joint J 2020;102-B(3):276–279.


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 319 - 328
1 Mar 2020
St Mart J de Steiger RN Cuthbert A Donnelly W

Aim

There has been a significant reduction in unicompartmental knee arthroplasty (UKA) procedures recorded in Australia. This follows several national joint registry studies documenting high UKA revision rates when compared to total knee arthroplasty (TKA). With the recent introduction of robotically assisted UKA procedures, it is hoped that outcomes improve. This study examines the cumulative revision rate of UKA procedures implanted with a newly introduced robotic system and compares the results to one of the best performing non-robotically assisted UKA prostheses, as well as all other non-robotically assisted UKA procedures.

Methods

Data from the Australian Orthopaedic Association National Joint Arthroplasty Registry (AOANJRR) for all UKA procedures performed for osteoarthritis (OA) between 2015 and 2018 were analyzed. Procedures using the Restoris MCK UKA prosthesis implanted using the Mako Robotic-Arm Assisted System were compared to non-robotically assisted Zimmer Unicompartmental High Flex Knee System (ZUK) UKA, a commonly used UKA with previously reported good outcomes and to all other non-robotically assisted UKA procedures using Cox proportional hazard ratios (HRs) and Kaplan-Meier estimates of survivorship.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 76 - 76
1 Feb 2020
Zhang J Sawires A Matzko C Sodhi N Ehiorobo J Mont M Hepinstall M
Full Access

Background. Manually instrumented knee arthroplasty is associated with variability in implant and limb alignment and ligament balance. When malalignment, patellar maltracking, soft tissue impingement or ligament instability result, this can lead to decreased patient satisfaction and early failure. Robotic technology was introduced to improve surgical planning and execution. Haptic robotic-arm assisted total knee arthroplasty (TKA) leverages three-dimensional planning, optical navigation, dynamic intraoperative assessment of soft tissue laxity, and guided bone preparation utilizing a power saw constrained within haptic boundaries by the robotic arm. This technology became clinically available for TKA in 2016. We report our early experience with adoption of this technique. Methods. A retrospective chart review compared data from the first 120 robotic-arm assisted TKAs performed December 2016 through July 2018 to the last 120 manually instrumented TKAs performed May 2015 to January 2017, prior to introduction of the robotic technique. Level of articular constraint selected, surgical time, complications, hemoglobin drop, length of stay and discharge disposition were collected from the hospital record. Knee Society Scores (KSS) and range of motion (were derived from office records of visits preoperatively and at 2-weeks, 7-weeks and 3-month post-op. Manipulations under anesthesia and any reoperations were recorded. Results. Less articular constraint was used to achieve balance in the robotic group, with a higher incidence of cruciate retaining retention (92% vs. 55%, p < 0.01) and a trend towards lower use of varus-valgus constrained articulations (5% vs. 11%, p = 0.068). Robotic surgery increased mean operative time by 22 minutes (p < 0.001). Operative time improved by 26 minutes from the first 10 robotic cases to the last 10 robotic cases. The robotic group had a lower hospital length of stay (2.7 vs. 3.4 days, p < 0.001). Discharge home was not significantly different between robotic and manual groups (89% vs. 83%, p = 0.2). Postoperative Knee Society scores were similar between groups at each postoperative time interval. Robotic-arm assisted TKA patients demonstrated lower mean flexion contracture at 2-weeks (1.8 vs. 3.3 degrees, p < 0.01), 7-weeks (1.0 vs. 1.8 degrees, p <0.01), and 3-months (0.6 vs 2.1 degrees, p = 0.02) post-surgery, but these differences were small. Mean flexion did not differ between groups at 3-month follow-up, but motion was achieved with a significantly lower rate of manipulation under anesthesia in the robotic group (4% vs 17%, p = 0.013). Conclusion. Preliminary findings demonstrate robotic-arm assisted TKA is safe and efficacious with outcomes comparable, if not superior, to that of manually instrumented TKA. Keywords. total knee arthroplasty, robotic arm-assisted total knee arthroplasty. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 50 - 50
1 Feb 2020
Gustke K
Full Access

Background. Use of a robotic tool to perform surgery introduces a risk of unexpected soft tissue damage due to the uncommon tactile feedback for the surgeon. Early experience with robotics in total hip and knee replacement surgery reported having to abort the procedure in 18–34 percent of cases due to inability to complete preoperative planning, hardware and soft tissue issues, registration issues, as well as concerns over actual and potential soft tissue damage. These can result in significant morbidity to the patient, negating all the desired advantages of precision and reproducibility with robotic assisted surgery. The risk of soft tissue damage can be mitigated by haptic software prohibiting the cutting tip from striking vital soft tissues and by the surgeon making sure there is a clear workspace path for the cutting tool. This robotic total knee system with a semi-active haptic guided technique was approved by the FDA on 8/5/2015 and commercialized in August of 2016. Two year clinical results have not been reported to date. Objective. To review an initial and consecutive series of robotic total knee arthroplasties for safety in regard to avoidance of known or delayed soft tissue injuries and the necessity to abort the using the robot to complete the procedure. Report the clinical outcomes with robotic total knee replacement at or beyond two years to demonstrate no delayed effect on expected outcome. Methods. The initial consecutive series of 65 Triathlon. TM. total knee replacements using a semi-active haptic guided system that were performed after commercialization that would be eligible for two year follow-up were reviewed. Pre-operative planning utilizing CT determined the implant placement and boundaries and thus the limit of excursion from any part of the end effector saw tip. Self-retaining retractors were also utilized. Operative reports, 2, 6, and 12 week, and yearly follow-up visit reports were reviewed for any evidence of inadvertent injury to the medial collateral ligament, patellar tendon, or a neurovascular structure from the cutting tool. Operative notes were also reviewed to determine if the robotic procedure was partially or completely aborted due to any issue. Knee Society Knee Scores (KS-KS) and Functional Scores (KS-FS) were recorded from pre-operative and yearly. Any complications were recorded. Results. 40 cases had two year follow-up. The average follow-up for this series was 1.51 years. No cases were unable to be completed robotically. No case had evidence for acute or delayed injury to the medial collateral ligament, patellar tendon, or neurovascular structure. The only complication was a revision total knee for tibial component loosening after a fall induced periprosthetic tibial fracture. Average pre-operative KS-KS and KS-FS improved from 46.9 and 52.1 to 99.2 and 88.6 at one year follow-up, 100.5 and 86.9 at two year follow-up. Conclusions. A semi-active haptic guided robotic system is a safe and reliable method to perform total knee replacement surgery. This series of initial robotic arm assisted surgery had no intraoperative or delayed soft tissue injuries. Preliminary short-term outcomes at up to two years show excellent outcomes