Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) have great promise in the field of orthopaedic nanomedicine due to their regenerative, as well as immunomodulatory and anti-inflammatory properties. Researchers are interested in harnessing these biologically sourced nanovesicles as powerful therapeutic tools with intrinsic bioactivity to help treat various orthopaedic diseases and defects. Recently, a new class of EV mimetics has emerged known as nanoghosts (NGs). These vesicles are derived from the plasma membrane of ghost cells, thus inheriting the surface functionalities and characteristics of the parent cell while at the same time allowing for a more standardized and reproducible production and significantly greater yield when compared to EVs. This study aims to investigate and compare the osteoinductive potential of MSC-EVs and MSC-NGs in vitro as novel tools in the field of bone tissue engineering and nanomedicine. To carry out this investigation, MSC-EVs were isolated from serum-free MSC conditioned media through differential ultracentrifugation. The remaining cells were treated with hypotonic buffer to produce MSC-ghosts that were then homogenized and serially extruded through 400 and 200 nm polycarbonate membranes to form the MSC-NGs. The concentration, size distribution, zeta potential, and protein content of the isolated nanoparticles were assessed. Afterwards, MSCs were treated with either MSC-EVs or MSC-NGs under osteogenic conditions, and their differentiation was assessed through secreted ALP assay, qPCR, and Alizarin Red mineralization staining. Isolation of MSC-EVs and MSC-NGs was successful, with relatively similar mean diameter size and colloidal stability. No effect on MSC viability and metabolic activity was observed with either treatment. Both MSC-EV and MSC-NG groups had enhanced osteogenic outcomes compared to the control; however, a trend was observed that suggests MSC-NGs as better osteoinductive mediators compared to MSC-EVs. Acknowledgements: The authors would like to acknowledge Canada Research Chair – Tier 1 in
Extensive bone defects, caused by severe trauma or resection of large bone tumors, are difficult to treat.
Critical size bone defects deriving from large bone loss are an unmet clinical challenge1. To account for disadvantages with clinical treatments, researchers focus on designing biological substitutes, which mimic endogenous healing through osteogenic differentiation promotion. Some studies have however suggested that this notion fails to consider the full complexity of native bone with respect to the interplay between osteoclast and osteoblasts, thus leading to the regeneration of less functional tissue2. The objective of this research is to assess the ability of our laboratory's previously developed 6-Bromoindirubin-3’-Oxime (BIO) incorporated guanosine diphosphate crosslinked chitosan scaffold in promoting multilineage differentiation of myoblastic C2C12 cells and monocytes into osteoblasts and osteoclasts1, 3, 4. BIO addition has been previously demonstrated to promote osteogenic differentiation in cell cultures5, but implementation of a co-culture model here is expected to encourage crosstalk thus further supporting differentiation, as well as the secretion of regulatory molecules and cytokines2. Biocompatibility testing of both cell types is performed using AlamarBlue for metabolic activity, and nucleic acid staining for distribution. Osteoblastic differentiation is assessed through quantification of ALP and osteopontin secretion, as well as osteocalcin and mineralization staining. Differentiation into osteoclasts is verified using SEM and TEM, qPCR, and TRAP staining. Cellular viability of C2C12 cells and monocytes was maintained when cultured separately in scaffolds with and without BIO for 21 days. Both scaffold variations showed a characteristic increase in ALP secretion from day 1 to 7, indicating early differentiation but BIO-incorporated sponges yielded higher values compared to controls. SEM and TEM imaging confirmed initial aggregation and fusion of monocytes on the scaffold's surface, but BIO addition appeared to result in smoother cell surfaces indicating a change in morphology. Late-stage differentiation assessment and co-culture work in the scaffold are ongoing, but initial results show promise in the material's ability to support multilineage differentiation. Acknowledgements: The authors would like to acknowledge the financial support of the Collaborative Health Research Program (CHRP) through CIHR and NSERC, as well as Canada Research Chair – Tier 1 in
The application of immune regenerative strategies to deal with unsolved pathologies, such as tendinopathies, is getting attention in the field of tissue engineering exploiting the innate immunomodulatory potential of stem cells [1]. In this context, Amniotic Epithelial Cells (AECs) represent an innovative immune regenerative strategy due to their teno-inductive and immunomodulatory properties [2], and because of their high paracrine activity, become a potential stem cell source for a cell-free treatment to overcome the limitations of traditional cell-based therapies. Nevertheless, these immunomodulatory mechanisms on AECs are still not fully known to date. In these studies, we explored standardized protocols [3] to better comprehend the different phenotypic behavior between epithelial AECs (eAECs) and mesenchymal AECs (mAECs), and to further produce an enhanced immunomodulatory AECs-derived secretome by exposing cells to different stimuli. Hence, in order to fulfill these aims, eAECs and mAECs at third passage were silenced for CIITA and Nrf2, respectively, to understand the role of these molecules in an inflammatory response. Furthermore, AECs at first passage were seeded under normal or GO-coated coverslips to study the effect of GO on AECs, and further exposed to LPS and/or IL17 priming to increase the anti-inflammatory paracrine activity. The obtained results demonstrated how CIITA and Nrf2 control the immune response of eAECs and mAECs, respectively, under standard or immune-activated conditions (LPS priming). Additionally, GO exposition led to a faster activation of the Epithelial-Mesenchymal transition (EMT) through the TGFβ/SMAD signaling pathway with a change in the anti-inflammatory properties. Finally, the combinatory inflammatory stimuli of LPS+IL17 enhanced the paracrine activity and immunomodulatory properties of AECs. Therefore, AECs-derived secretome has emerged as a potential treatment option for inflammatory disorders such as tendinopathies.
Adipose-derived stem cells (ADSCs) are an effective alternative for Teno-regeneration. Despite their applications in tendon engineering, the mechanisms promoting tendon healing still need to be understood. Since there is scattered information on ovine ADSCs, this research aims to investigate Ovine ADSCs were isolated from the tail region according to FAT-STEM laboratories, expanded until passage six (P6), and characterized in terms of stemness, adhesion and MHC markers by Flow Cytometry (FCM) and immunocytochemistry (ICC). Cell proliferation and senescence were evaluated with MTT and Beta-galactosidase assays, respectively. P1 ADSCs’ teno-differentiation was assessed by culturing them with teno-inductive Conditioned Media (CM) or engineering them on tendon-mimetic PLGA scaffolds. ADSCs teno-differentiation was evaluated by morphological, molecular (qRT-PCR), and biochemical (WesternBlot) approaches. ADSCs exhibited mesenchymal phenotype, positive for stemness (SOX2, NANOG, OCT4), adhesion (CD29, CD44, CD90, CD166) and MHC-I markers, while negative for hematopoietic (CD31, CD45) and MHC-II markers, showing no difference between passages. ICC staining confirmed these results, where ADSCs showed nuclear positivity for SOX2 (≅ 56%) and NANOG (≅ 67%), with high proliferation capacity without senescence until P6. Interestingly, ADSCs cultured with the teno-inductive CM did not express tenomodulin (TNMD) protein or gene. Conversely, ADSCs seeded on scaffolds teno-differentiated, acquiring a spindle shape supported by TNMD protein expression at 48h (p<0.05 Ovine ADSCs respond differently upon distinct teno-inductive strategies. While the molecules on the CM could not trigger a teno-differentiation in the cells, the scaffold's topological stimulus did, resulting in the best strategy to apply. More insights are requested to better understand ovine ADSCs’ tenogenic commitment before using them
Cite this article:
Osteoarthritis (OA) is the most common type of arthritis and causes a significant deterioration in patients’ quality of life. The high prevalence of OA as well as the current lack of disease-modifying drugs led to a rise in regenerative medicine efforts. The hope is that this will provide a treatment modality with the ability to alter the course of OA via structural modifications of damaged articular cartilage (AC). Regenerative therapy in OA starts with the concept that administered cells may engraft to a lesion site and differentiate into chondrocytes. However, recent studies show that cells, particularly when injected in suspension, rapidly undergo apoptosis after exerting a transient paracrine effect. If the injected stem cells do not lead to structural improvements of a diseased joint, the high cost of cell therapy for OA cannot be justified, particularly when compared with other injection therapeutics such as corticosteroids and hyaluronic acid. Long-term survival of implanted cells that offer prolonged paracrine effects or possible engraftment is essential for a successful cell therapy that will offer durable structural improvements. In this talk, the history and current status of regenerative therapy in OA are summarized along with the conceptual strategy and future directionsfor a successful regenerative therapy that can provide structural modifications in OA.
Low back pain is thought to relate to intervertebral disc (IVD) degeneration. Although the mechanisms have not been clearly identified, exhaustion of nucleus pulposus cells and their producing matrix is regarded as one cause. The matrix of the IVD is continuously replenished and remodeled by tissue-specialized cells and are crucial in supporting the IVD function. However, due to aging, trauma, and genetic and lifestyle factors, the cells can lose their potency and viability, thereby limiting their collective matrix production capacity. We have discovered the link between loss of angiopoietin-1 receptor (Tie2)-positive human NP progenitor cells (NPPC) and IVD degeneration. Tie2+ cells were characterized as undifferentiated cells with multipotency and possessing high self-renewal abilities. Thus we and others have proposed Tie2+ NPPC as a potent cell source for regenerative cell therapies against IVD degeneration. However, their utilization is hindered by low Tie2-expressing cell yields from NP tissue, in particular from commonly available older and degenerated tissue sources. Moreover, NPPC show a rapid Tie2 decrease due to cell differentiation as part of standard culture processes. As such, a need exists to optimize or develop new culture methods that enable the maintenance of Tie2-expressing NPPC. Trials to overcome these difficulties will be shared.
The high prevalence of osteoarthritis (OA), as well as the current lack of disease-modifying drugs for OA, has provided a rationale for regenerative medicine as a possible treatment modality for OA treatment. In this editorial, the current status of regenerative medicine in OA including stem cells, exosomes, and genes is summarized along with the author’s perspectives. Despite a tremendous interest, so far there is very little evidence proving the efficacy of this modality for clinical application. As symptomatic relief is not sufficient to justify the high cost associated with regenerative medicine, definitive structural improvement that would last for years or decades and obviate or delay the need for joint arthroplasty is essential for regenerative medicine to retain a place among OA treatment methods. Cite this article:
Intervertebral disc degeneration (IDD) affects more than 80% of the population and is often linked to a reduction of the proteoglycan content within the nucleus pulposus (NP). The nutritional decline and accumulation of degraded matrix products promote the inflammatory process favoring the onset of disease. Several regenerative approaches based on cell therapy have been explored. Recently, paracrine factors and extracellular vesicles (EVs) such as exosomes have been described to play a fundamental role in the cross-talk between mesenchymal stem cells (MSCs) and NP in the microenvironment. EVs vehicule different molecules: proteins, nucleic acids and lipids involved in intercellular communication regulating the homeostasis of recipient cells. Therefore, MSCs-derived exosomes are an interesting emerging tool for cell-free therapies in IDD. The aim of this study was to evaluate the Exosomes were isolated through a multistep ultracentrifugation of bone marrow-MSCs (BM-MSCs) conditioned media (CM), obtained by culturing BM-MSCs without fetal bovine serum (FBS) for 48 hours. Exosomal morphology was characterized by transmission electron microscope (TEM). The exosomes were quantified by bicinchoninic acid assay (BCA) and cryopreserved at –80 °C. hNPCs derived from surgical speciments digested with type II collagenase. After culture expansion TEM analysis confirmed the cup-shaped vescicles in our preparations. Gene expression levels resulted to be modulated by both exosomes and CM compared to controls. In addition, both treatments were capable to alter the inflammatory stimuli of IL-1b. Interestingly, exosomes were able to change anabolic and catabolic gene expression levels differently from CM. In our experimental conditions, both exosomes and CM from BM-MSCs could be an interesting alternative strategy in intervertebral disc regeneration, overcoming the costs and translational limits of cell therapy to the clinical practice.
SOX genes comprise a family of transcription factors characterised by a conserved HMG-box domain that confer pleiotropic effects on cell fate and differentiation through binding to the minor groove of DNA. Paracrine regulation and contact-dependant Notch signalling has been suggested to modulate the induction of SOX gene expression. The objective of this study is to investigate the crosstalk between and preconditioning of mesenchymal stem cells (MSCs) with chondrocytes through comparing SOX gene expression in their co-culture and respective monocultures. Our study adopted an AMSC phenotype was evidenced by the expression of CD105, CD73, CD90 & heterogenous CD34 but not CD45, CD14, CD19 & HLA-DR in flow cytometry, and also differentiation into chondrogenic, osteogenic and adipogenic lineages with positive Alcian blue, Alizarin Red and Oil Red O staining. The expression of SOX5, SOX6, and SOX9 were greater in observed co-cultures than would be expected from an expression profile modelled from monocultures. The findings provides evidence for the upregulation of SOX family transcription factors expression during the co-culture of MSCs and chondrocytes, suggesting an active induction of chondrogenic differentiation and change of cell fate amidst a microenvironment that facilitates cell-contact and paracrine secretion. This provides insight into the chondrogenic potential and therapeutic effects of MSCs preconditioned by the chondrocyte secretome (or potentially chondrocytes reinvigorated by the MSC secretome), and ultimately, cartilage repair.
Introduction. Intervertebral disc degeneration (IVDD) associated with low back pain is a major contributor to global disability. Current treatments are poorly efficient in the long-term resulting in medical complications. Therefore, minimally invasive injectable therapies are required to repopulate damaged tissues and aid regeneration. Among injectable biomaterials, self-assembling peptide hydrogels (SAPHs) represent potential candidates as 3D cell carriers. Moreover, the advent of graphene-related materials has opened the route for the fabrication of graphene-containing hydrogel nanocomposites to direct cellular fate. Here, we incorporated graphene oxide (GO) within a SAPH to develop a biocompatible and injectable hydrogel to be used as cell carrier to treat IVDD. Methods and results. Hydrogel morphology and mechanical properties have been investigated showing high mechanical properties (G'=12kPa) comparable with human native nucleus pulposus (NP) tissue (G'=10kPa), along with ease of handling and injectability in dry and body fluid conditions. Hydrogel nanocomposites resulted biocompatible for the encapsulation of bovine NP cells, showing higher viability (>80%) and metabolic activity in 3D cell culture over 7 days, compared to GO-free hydrogels. Moreover, GO has demonstrated to bind TGF-β3 biomolecules with high efficiency, suggesting the use of GO as local reservoir of growth factors within the injected hydrogel to promote extracellular matrix deposition and tissue repair. Conclusions. Our results show that incorporation of GO within the SAPH improves cell viability and metabolic activity. Furthermore, its tissue-mimicking mechanical properties and chemical tunability make it a promising candidate as injectable carrier of NP cells for the treatment of IVDD. Part of this work has been published (DOI: 10.1016/j.actbio.2019.05.004). Conflicts of interests: No conflicts of interest. Sources of funding: The authors thank the EPSRC & MRC CDT in
Background. Degeneration of the intervertebral disc (IVD) is a leading cause of lower back pain, and a significant clinical problem. Inflammation mediated by IL-1β and TNF-α drives IVD degeneration through promoting a phenotypic switch in the resident nucleus pulposus (NP) cells towards a more catabolic state, resulting in extracellular matrix degradation. Bone marrow mesenchymal stem cells (MSCs) produce bioactive factors that modulate local tissue microenvironments and their anti-inflammatory potential has been shown in numerous disease models. Thus MSCs offer a potential therapy for IVD degeneration. In a clinical setting, adipose-derived stem cells (ASCs) might represent an alternative and perhaps more appealing cell source. However, their anti-inflammatory properties remain poorly understood. Methods. Here we assess the anti-inflammatory properties of donor-matched human ASCs and MSCs using qPCR and western blotting. Results. We demonstrate that stimulating ASCs or MSCs with IL-1β and/or TNF-α elicits a strong anti-inflammatory response with increased expression of IL-1 receptor antagonist (IL-1Ra), cyclooxygenase-2 (COX-2) and the tissue protective protein tumour-necrosis factor stimulated gene-6 (TSG-6). ASCs produced significantly higher levels of IL-1Ra and TSG-6 than their matched MSCs at both gene and protein levels, indicating that ASCs are potentially a more potent anti-inflammatory cell type. This anti-inflammatory response was also observed upon co-culture with degenerate NP cells without exogenous cytokine. Signalling analyses suggested this difference between cell types might be mediated through differences in the activation of inflammation-associated transcription factors. Conclusion. These data indicate that the anti-inflammatory properties of ASCs may be useful in developing future therapies for IVD degeneration. No conflicts of interest. Sources of funding: EPSRC-MRC Centre for Doctoral Training in
The human amniotic membrane (hAM) contains cells of stem cell characteristics with low immunogenicity and anti-inflammatory properties and has for centuries been applied in the clinics especially for ophthalmology and wound care. It has recently been shown to be promising for novel applications such as tissue engineering and regenerative medicine. Towards these novel applications, we have demonstrated the potential of hAM in toto to differentiate towards bone, cartilage, Schwann like cells and recently also a producer of surfactant. We have further investigated the relevance of the location of origin for the therapeutic potential of the membrane. We show that placental and reflected hAM differs distinctly in morphology and functional activity. The placental region has significantly higher mitochondrial activity, however lower levels of reactive oxygen species, which suggests that placental and reflected regions may have different potential for tissue regeneration. We have further investigated the suitability of hAM to support therapeutic cells and have improved its maintenance
The selection of a proper material to be used as a scaffold or as a hydrogel to support, hold or encapsulate cells is both a critical and a difficult choice that will determine the success of failure of any tissue engineering and regenerative medicine (TERM) strategy. We believe that the use of natural origin polymers, including a wide range of marine origin materials, is the best option for many different approaches that allow for the regeneration of different tissues. In addition to the selection of appropriate material systems it is of outmost importance the development of processing methodologies that allow for the production of adequate scaffolds/matrices, in many cases incorporating bioactive/differentiation agents in their structures. An adequate cell source should be selected. In many cases efficient cell isolation, expansion and differentiation, and in many cases the selection of a specific sub-population, methodologies should be developed and optimized. We have been using different human cell sources namely: mesenchymal stem cells from bone marrow, mesenchymal stem cells from human adipose tissue, human cells from amniotic fluids and membranes and cells obtained from human umbilical cords. The development of dynamic ways to culture the cells and of distinct ways to stimulate their differentiation in 3D environments, as well as the use of nano-based systems to induce their differentiation and internalization into cells, is also a key part of some of the strategies that are being developed in our research group. The potential of each combination materials/cells, to be used to develop novel useful regeneration therapies will be discussed. The use of different cells and their interactions with different natural origin degradable scaffolds and smart hydrogels will be described. Several examples of TERM strategies to regenerate different types of musculoskeletal tissues will be presented. Relevance to orthopaedics will be highlighted.
Skeletal sequels of traumatisms, diseases or surgery often lead to bone defects that fail to self-repair. Although the gold standard for bone reconstruction remains the autologous bone graft (ABG), it however exhibits some drawbacks and bone substitutes developed to replace ABG are still far for having its bone regeneration capacity. Herein, we aim to assess a new injectable allogeneic bone substitute (AlloBS) for bone reconstruction. Decellularized and viro-inactivated human femoral heads were crushed then sifted to obtain cortico-spongious powders (CSP). CSP were then partly demineralized and heated, resulting in AlloBS composed of particles consisting in a mineralized core surrounded by demineralized bone matrix, engulfed in a collagen I gelatin. Calvarial defects (5mm in diameter, n=6/condition) in syngeneic Lewis1A rats were filled with CSP, AlloBS±TBM (total bone marrow), BCP (biphasic calcium phosphate)±TBM or left unfilled (control). After 7 weeks, the mineral volume/total volume (MV/TV) ratios were measured by µCT and Movat's pentachrome staining were performed on undemineralized frontal sections. The MV/TV ratios in defects filled with CSP, AlloBS or BCP were equivalent, whereas the MV/TV ratio was higher in AlloBS+TBM compared to CSP, AlloBS or BCP (
Matrix therapy is a newly coined name emphasizing the importance of the extracellular matrix in regenerative medicine. Heparan sulfates (HS) are key elements of the extracellular matrix (ECM) scaffold which store and protect most growth factors/cytokines controlling the cell migration and differentiation required for healing processes. We have engineered biodegradable nano-polymers (alpha 1–6 polyglucose carboxymethyl sulfate) mimicking (RGTA®) to replace destroyed HS in the damaged ECM scaffolding and to protect cytokines produced by healthy neighbouring cells, thereby restoring the ECM microenvironment and tissue homeostasis and, if needed, provide a homing niche for cell therapy. This matrix therapy approach has considerably improved the quality of healing in various animal models, including muscle and tendon, with reduction or absence of fibrosis resulting in a regeneration process. Over 50 000 patients have been treated in the last years for skin and corneal wounds with dedicated products based on this technology. A randomized controlled trial was performed on 22 racing French Standardbred Trotters (ST) horses to evaluate the efficacy of another polymer, OTR4131 Equitend®, to treat tendinopathies. We evaluated the effect versus placebo on acute superficial digital flexor tendonitis over 4 months by clinical and ultrasonographic measures and their racing performances followed up over the 2 years after treatment. A significant reduction on tendon cross section area was measured in treated animals, racing was 2–3 times more often than placebo, with 3.3 times fewer recurrences and pre-injury performance level was maintained. This study may pave the way for development in humans.
Degeneration of intervertebral disc (IVD) Nucleus Pulposus (NP) is a major cause of low back pain (LBP). Healthy NP contains two cell types: notochordal cells (NTC) and nucleopulpocytes (NPCytes). While NTC are embryonic notochord derived cells that are regarded as the resident stem cells of NP, NPCytes are considered the mature NP cells responsible for extracellular matrix (ECM) synthesis. During IVD aging, some still unknown cues drive NTC disappearance. This loss of NTC alters their dialog with NPCytes thereby jeopardizing cell viability and ECM homeostasis, which in turn drives NP degeneration. In this context, NP regeneration by re-establishing this NTC/NPCytes dialog has been contemplated with clinical interest. We will first share our view of the mesenchymal stem cells (MSC)-based therapies that have been preclinically and clinically assessed in LBP. We will then comment on the biomaterial-assisted MSC therapies that recently enter the scene of IVD regeneration. Finally, we will present our REMEDIV project that aims at developing a NP substitute containing stem cells-derived NPCytes and NTC within an injectable hydrogel. We will share our results regarding the generation of NPCytes from adipose-derived MSC and our recent unpublished evidences that human induced-pluripotent stem cells can be differentiated into NTC. Finally, we will consider our ability to transplant these regenerative cells using hydrogels in various animal models. Whether this concept could open new therapeutic windows in the management of discogenic low back pain will finally be discussed.