Prompt mobilisation after the Fracture neck of femur surgery is one of the important key performance index (‘KPI caterpillar charts’ 2021) affecting the overall functional outcome and mortality. Better control of peri-operative blood pressure and minimal alteration of renal profile as a result of surgery and anaesthesia may have an implication on early post-operative mobilisation. Aim was to evaluate perioperative blood pressure measurements (duration of fall of systolic BP below the critical level of 90mmHg) and effect on the post-operative renal profile with the newer short acting spinal anaesthetic agent (prilocaine and chlorprocaine) used alongside the commonly used regional nerve block. 20 patients were randomly selected who were given the newer short acting spinal anaesthetic agent along with a regional nerve block between May 2019 and February 2020. Anaesthetic charts were reviewed from all patients for data collection. The assessment criteria for perioperative hypotension: Duration of systolic blood pressure less than 90 mm of Hg and change of pre and post operative renal functions. Only one patient had a significant drop in systolic BP less than 90mmHg (25 minutes). 3 other patients had a momentary fall of systolic BP of less than 5 minutes. None of the above patients had mortality and had negligible change in pre and post op renal function. Only one patient in this cohort had elevation of post-operative creatinine levels but did not have any mortality. Only 1 patient died on day 3 post operatively who had multiple comorbidities and was under evaluation for GI cancer. Even in this patient the peri-operative blood pressure was well maintained (never below 90mmHg systolic) and
Background. In recent years, ‘Get It Right First Time (GIRFT)’ have advocated cemented replacements in femoral part of Total hip arthroplasty (THA) especially in older patients. However, many studies were unable to show any difference in outcomes and although cemented prostheses may be associated with better short-term pain outcomes there is no clear advantage in the longer term. It is not clear when and why to do cemented instead of cementless. Aim. To assess differences in patient reported outcomes in uncemented THAs based on patient demographics in order to decide when cementless THA can be done safely. Method. Prospective data collection of consecutive 1079 uncemented THAs performed for 954 patients in single trust between 2010 and 2020. Oxford Hip Score (OHS) and complications were analysed against demographic variables (age, sex, BMI, ASA) and prosthesis features (femoral and acetabular size, offset and acetabular screws). Results. The mean pre-operative OHS was 14.6 which improved to 39.0 at 1 year follow up (P Value=0.000). There was no statistically significant difference between OHS outcome in patients aged over 70 versus younger groups. With a small number of revisable complications increase with age from 50s upwards. Male patients’ OHS score was on average 2.4 points higher than women. Men, however were 2.9 times more likely to experience fractures and high offset hips were 2.5 times more likely to experience dislocations. DAIR, intraoperative calcar fractures, post-operative fractures and dislocations were not associated with worse OHS. Patients with increased BMI had worse pre and
Operative management of clavicle fractures is increasingly common. In the context of explaining the risks and benefits of surgery, understanding the impact of incisional numbness as it relates to the patient experience is key to shared decision making. This study aims to determine the prevalence, extent, and recovery of sensory changes associated with supraclavicular nerve injury after open reduction and plate internal fixation of middle or lateral clavicle shaft fractures. Eighty-six patients were identified retrospectively and completed a patient experience survey assessing sensory symptoms, perceived
Abstract. Background. The incidence of periprosthetic fractures of the femur around a total knee arthroplasty (TKA) is rising and this is owed to the increased longevity that today's TKA implants allow for, as well as an aging population. These injuries are significant as they are related to increased morbidity and mortality. Methods. We retrospectively reviewed all periprosthetic fractures around a TKA that presented to our NHS Trust between 2011 to 2020. Medical records were reviewed. Treatment, complications and mortality were noted. Results. 37 patients (34 females) with an average age of 84 (range 65–99) met the inclusion criteria for this study. 17 patients (45.9%) underwent open reduction and internal fixation (ORIF), eight patients (21.6%) underwent revision arthroplasty to a distal femoral replacement (DFR) and 12 patients (32.4%) were treated non-operatively. 10 (58.8%) of the 17 patients that were treated with ORIF were discharged from hospital to a rehabilitation facility rather than their usual residence. In comparison, 3 (37.5%) of the patients that were treated with a DFR were discharged to a rehabilitation facility. one-year mortality rate in the ORIF group was 29.4 compared to 12.5% in those that had a DFR. Conclusion. Revision arthroplasty using a DFR should be considered in patients with periprosthetic fractures around a TKR, as it is associated with lower mortality rates and higher immediate
Orthopaedic training sessions, vital for surgeons to understand
Rotator cuff injuries represent a significant burden to the health care system, affecting more than 30% of the population over the age of sixty. Despite the advanced surgical techniques that are available, poor results are sometimes seen in a subset of patients receiving surgical treatment for their rotator cuff disease. The reasons for this failure of treatment remain unclear, particularly if the surgery was ‘technically’ successful. An increasing body of evidence has demonstrated a strong correlation between pre-operative psychological factors and functional outcome following several orthopaedic procedures. This association, however, has not been fully demonstrated or effectively investigated in the context of rotator cuff treatment. The main objective for this study was to conduct a systematic review to determine the impact of psychosocial factors on the outcome of treatment in patients with rotator cuff disease. A systematic search was conducted of Medline, CINAHL, and PsychInfo databases for articles published from database inception until September 2018. The titles and abstracts were screened for all of the studies obtained from the initial search. Inclusion and exclusion criteria were applied, and a full text review was conducted on those studies meeting the eligibility criteria. A total of 1252 studies were identified. Following removal of duplicates and application of the inclusion and exclusion criteria, 46 studies underwent a full-text review. Ten studies were included in the final analysis. A total of 1,206 patients, with a mean follow-up of 13 months, were included. Three studies examined patient expectations prior to treatment. All three found that higher expectations prior to treatment led to a significantly improved outcome following both operative and non-operative treatment. Three studies assessed the association between pre-operative general psychological measures and post-operative pain and function. All three studies found patients with worse pre-operative general psychological scores demonstrated increased post-operative pain. Two of the studies also found a negative association with
Currently, hip implant designs are evaluated experimentally using mechanical simulators or cadavers, and total hip arthroplasty (THA) postoperative outcomes are evaluated clinically using long-term follow-up. However, these evaluation techniques can be both costly and time-consuming. Neither can provide an assessment of post-operative results at the onset of implant development. More recently, a forward-solution mathematical model was developed that functions as theoretical joint simulator, providing instant feedback to designers and surgeons alike. This model has been validated by comparing the model predictions with kinematic results from fluoroscopy for both implanted and non-implanted hips and kinetics from a telemetric hip. The model allows surgical technique modifications and implant component placement under in vivo conditions. The objective of this study was to further expand the capabilities of the model to function as an intraoperative virtual surgical tool (Figure 1). This new module allows the surgeon to simulate surgery, then predict, compare, and optimize postoperative THA outcomes based on component placement, sizing choices, reaming and cutting locations, and surgical methods. This virtual surgery tool simulates the quadriceps, hamstring, gluteus, iliopsoas, tensor fasciae latae, and an adductor muscle groups, as well as the hip capsular ligament groups. The model can simulate resecting, weakening, loosening, or tightening of soft tissues based on surgical techniques. Additionally, the model can analyze a variety of activities, including gait and deep flexion activities. Initially, the virtual surgery module offers theoretical surgery tools that allow surgeons to alter surgical alignments, component designs, offsets, as well as reaming and cutting simulations. The virtual model incorporates a built-in CT scan bone database which will assist in determining muscle and ligament attachment sites as well as bony landmarks. The virtual model can be used to assist in the placement of both the femoral component and the acetabular cup (Figure 2). Moreover, once the surgeon has decided on the placements of the components, they can use the simulation capabilities to run virtual human body maneuvers based on the chosen parameters. The simulations will reveal force, contact stress, and motion predictions of the hip joint (Figure 3). The surgeon can then choose to modify the positions accordingly or proceed with the surgery. This new virtual surgical tool will allow surgeons to gain a better understanding of possible post-operative outcomes under pre-operative conditions or intra-operatively. Simulations using the virtual surgery model has revealed that improper component placement may lead to non-ideal
Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for independent 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the transepicondylar axis. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. In summary, the use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of
Introduction. Hoffa fractures are rare, intra-articular fractures of the femoral condyle in the coronal plane and involving the weight-bearing surface of the distal femur. Surgical fixation is warranted to achieve stability, early mobilisation and satisfactory knee function. We describe a unique type of Hoffa fracture in the coronal plane with sagittal split and intra-articular comminution. There is scant evidence in current literature with regards to surgical approaches, techniques and implants. We report of our case with a review of the literature. Case report. A 40 year old male motorcyclist was involved in a high speed road traffic collision. X-rays confirmed displaced unicondylar fracture of the lateral femoral condyle. CT showed sagittal split of the Hoffa fragment and intra-articular comminution. MRI showed partial rupture of the anterior cruciate ligament. The patient underwent definitive surgical treatment via a midline skin incision and lateral parapatellar approach using cannulated screws, headless compression screws and anti-glide plate. Weightbearing was commenced at 8 weeks. Arthroscopy and adhesiolysis was performed at 12 weeks to improve range of motion. The patient was discharged at one year with a pain-free, functional knee. Discussion. Hoffa fractures are high-energy fractures, often seen in young male motorcyclists with flexed and slightly abducted knee. Most papers recommend surgical fixation, however there is no widely accepted surgical method or rehabilitation regime. Varying surgical approaches, screw direction, choice of implants, and post-operative care have been described. Surgical approach depends on the configuration of the fracture. The medial/lateral parapatellar approach is commonly used as it does not compromise future arthroplasty, but it does not allow access to fix posterior comminution. Arthroscopic-assistance may be used with good outcomes and less tissue dissection. AP screws are widely reported in the literature, most likely due to easier access to the fracture site. PA screws may provide better stability, but access is more difficult. Fixation often involves passing screws through the articular surface, therefore the area damaged should be kept to a minimum by using the smallest possible screw; headless compression screws leave a smaller footprint in the articular cartilage. Locking plate augmentation generally gives good outcomes. Conclusion. Hoffa fractures are rare and difficult to treat. Surgical treatment is the best choice for optimum
The aims of this study were to examine the rate at which the
positioning of the acetabular component, leg length discrepancy
and femoral offset are outside an acceptable range in total hip
arthroplasties (THAs) which either do or do not involve the use
of intra-operative digital imaging. A retrospective case-control study was undertaken with 50 patients
before and 50 patients after the integration of an intra-operative
digital imaging system in THA. The demographics of the two groups
were comparable for body mass index, age, laterality and the indication
for surgery. The digital imaging group had more men than the group without.
Surgical data and radiographic parameters, including the inclination
and anteversion of the acetabular component, leg length discrepancy,
and the difference in femoral offset compared with the contralateral
hip were collected and compared, as well as the incidence of altering
the position of a component based on the intra-operative image.Aims
Patients and Methods
The aims of this study were to determine the proportion of patients
with outlier varus or valgus alignment in kinematically aligned
total knee arthroplasty (TKA), whether those with outlier varus
or valgus alignment have higher forces in the medial or lateral
compartments of the knee than those with in-range alignment and
whether measurements of the alignment of the limb, knee and components
predict compartment forces. The intra-operative forces in the medial and lateral compartments
were measured with an instrumented tibial insert in 67 patients
who underwent a kinematically aligned TKA during passive movement.
The mean of the forces at full extension, 45° and 90° of flexion
determined the force in the medial and lateral compartments. Measurements
of the alignment of the limb and the components included the hip-knee-ankle
(HKA) angle, proximal medial tibial angle (PMTA), and distal lateral
femoral angle (DLFA). Measurements of the alignment of the knee
and the components included the tibiofemoral angle (TFA), tibial
component angle (TCA) and femoral component angle (FCA). Alignment was
measured on post-operative, non-weight-bearing anteroposterior (AP)
scanograms and categorised as varus or valgus outlier or in-range
in relation to mechanically aligned criteria.Aims
Patients and Methods
The purpose of this study was to assess early physical function
after total hip or knee arthroplasty (THA/TKA), and the correlation
between patient-reported outcome measures, physical performance
and actual physical activity (measured by actigraphy). A total of 80 patients aged 55 to 80 years undergoing THA or
TKA for osteoarthritis were included in this prospective cohort
study. The main outcome measure was change in patient reported hip
or knee injury and osteoarthritis outcome score (HOOS/KOOS) from
pre-operatively until post-operative day 13 (THA) or 20 (TKA). Secondary measures
were correlations to objectively assessed change in physical performance
(paced-walk, chair-stand, stair-climb tests) at day 14 (THA) or
21 (TKA) and actual physical activity (actigraphy) measured at day
12 and 13 (THA) or 19 and 20 (TKA). Aims
Patients and Methods
Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the TEA. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. Given these ideals, to what extent are patients improved? The concept of reproducing bony anatomy is based on the pretext that form will dictate function, such that normal-leaning anatomy will tend towards normal-leaning kinematics. Therefore, we seek to evaluate knee function based on objective assessments of movement or kinematics. The use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of
The aim of the present study was to compare the 30- and 90-day
re-admission rates and complication rates of outpatient and inpatient
total shoulder arthroplasty (TSA). The United States Medicare Standard Analytical Files database
was questioned to identify patients who had undergone outpatient
or inpatient TSA between 2005 and 2012. Patient characteristics
were compared between the two groups using chi-squared analysis. Multivariate
logistic regression analysis was used to control for differences
in baseline patient characteristics and to compare the two groups
in terms of post-operative complications within 90 days and re-admission
within 30 days and 90 days.Aims
Patients and Methods
The aim of this study was to compare the biomechanical stability and clinical outcome of external fixator combined with limited internal fixation (EFLIF) and open reduction and internal fixation (ORIF) in treating Sanders type 2 calcaneal fractures. Two types of fixation systems were selected for finite element analysis and a dual cohort study. Two fixation systems were simulated to fix the fracture in a finite element model. The relative displacement and stress distribution were analysed and compared. A total of 71 consecutive patients with closed Sanders type 2 calcaneal fractures were enrolled and divided into two groups according to the treatment to which they chose: the EFLIF group and the ORIF group. The radiological and clinical outcomes were evaluated and compared.Objectives
Methods
To determine the effect of a change in design of a cementless
ceramic acetabular component in fixation and clinical outcome after
total hip arthroplasty We compared 342 hips (302 patients) operated between 1999 and
2005 with a relatively smooth hydroxyapatite coated acetabular component
(group 1), and 337 hips (310 patients) operated between 2006 and
2011 using a similar acetabular component with a macrotexture on
the entire outer surface of the component (group 2). The mean age of
the patients was 53.5 (14 to 70) in group 1 and 53.0 (15 to 70)
in group 2. The mean follow-up was 12.7 years (10 to 17) for group
1 and 7.2 years (4 to 10) for group 2.Aims
Patients and Methods
The most effective surgical approach for total hip arthroplasty
(THA) remains controversial. The direct anterior approach may be
associated with a reduced risk of dislocation, faster recovery,
reduced pain and fewer surgical complications. This systematic review
aims to evaluate the current evidence for the use of this approach
in THA. Following the Cochrane collaboration, an extensive literature
search of PubMed, Medline, Embase and OvidSP was conducted. Randomised
controlled trials, comparative studies, and cohort studies were
included. Outcomes included the length of the incision, blood loss,
operating time, length of stay, complications, and gait analysis.Aims
Materials and Methods
Background: Metal sensitivity following total joint arthroplasty (TJA) has been of increased concern, but the impact of a patient-reported metal allergy on clinical outcomes has not been investigated. The purpose of this study was to report the incidence and impact of patient-reported metal allergy following total knee (TKA) and total hip arthroplasty (THA). Methods: This was a retrospective, IRB-approved investigation of patients undergoing a primary, elective TJA between 2009 and 2011. All patients completed a pre-operative questionnaire asking about drug and environmental allergies. In January of 2010, a specific question was added regarding the presence of a metal allergy. UCLA Activity, SF-12, Modified Harris Hip (MHHS), and Knee Society (KSS) scores were collected pre-operatively and at most recent follow-up. Overall cohorts of metal allergy and non-metal allergy patients were compared and a 1:2 matching analysis was also performed. Results: 906 primary THAs and 589 primary TKAs were included. The incidence of patient-reported metal allergy was 1.7% before January 2010 and 4.0% after (overall 2.3% of THAs and 4.1% of TKAs). 97.8% of metal allergy patients were female. Following TKA,
Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the TEA. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. Given these ideals, to what extent are patients improved? The concept of reproducing bony anatomy is based on the pretext that form will dictate function, such that normal-leaning anatomy will tend towards normal-leaning kinematics. Therefore, we seek to evaluate knee function based on objective assessments of movement or kinematics. In summary, the use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of